Approximability, compactness and random dense sequences

Robert Kenny

Notation

X separable metric space
$\mathcal{R}_{X}:=\left\{\rho \mid \rho: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow X\right.$ onto $\}$
$\mathcal{I}_{\mathrm{d}}:=\{\nu \nu: \subseteq \mathbb{N} \rightarrow X$ dense $\}$

Fix open cover $\left(U_{i}\right)_{1}^{r},[r]:=\{1, \ldots, r\}$
$R: X \rightrightarrows[r], x \mapsto\left\{i \mid U_{i} \ni x\right\}$
$S:[r] \rightrightarrows X, i \mapsto U_{i}$
$T_{\epsilon}: X \rightrightarrows X, x \mapsto\{y \mid d(x, y)<\epsilon\} \quad(\epsilon>0)$
$\delta \leq_{a} \rho: \Longleftrightarrow(\forall \epsilon>0)\left(T_{\epsilon}\right.$ is (δ, ρ)-computable $)$
$\delta \leq \rho \Longleftrightarrow\left(\mathrm{id}_{X}: X \rightarrow X\right.$ is (δ, ρ)-computable)
$\delta \in \mathcal{R}_{X}$ compact if for each finite open cover $\left(U_{i}\right)_{1}^{r}, R: X \rightrightarrows[r]$ is $\left(\delta,\left.\delta_{\mathbb{N}}\right|^{[r]}\right)$-computable

Example: If X compact and $\nu \in \mathcal{I}_{\text {d }}$, the standard representation (equivalent to Cauchy representation in case of a computable metric space) defined by

$$
p \in \delta^{-1}\{x\}: \Longleftrightarrow\left\{p_{i}-1 \mid i \in \mathbb{N} \wedge p_{i} \geq 1\right\}=\{k \mid \alpha(k) \ni x\},
$$

$$
\alpha: \mathbb{N} \rightarrow \mathcal{T}_{X},\langle i, j\rangle \mapsto B_{d}\left(\nu(i) ; \nu_{\mathbb{Q}^{+}}(j)\right) .
$$

Lemma 1. Suppose X compact, $\delta, \rho \in \mathcal{R}_{X}, \delta$ compact. If ρ-computable points are dense in X then $\delta \leq a \rho$.

Proof. Given $\epsilon>0$, pick open cover $\left(U_{i}\right)_{1}^{r}$ with $\max _{i}$ diam $U_{i}<\epsilon$. Then ($\delta, \delta_{\mathbb{N}} \mid{ }^{[r]}$)-computability of R and ($\left.\delta_{\mathbb{N}}\right|^{[r]}, \rho$)-computability of S implies (δ, ρ)-computability of T_{ϵ}.

Some generalisation is possible. Consider e.g. Lemma 2. If (X, d) a totally bounded metric space and $\nu \in \mathcal{I}_{d}$ then for any $r \in \mathbb{Q}^{+}$there exists finite $A \subseteq \operatorname{dom} \nu$ with $X=\cup_{a \in A} B_{d}(\nu(a) ; r)$.

For $\nu_{0}, \nu_{1}, \nu, \lambda \in \mathcal{I}_{\mathrm{d}}$, write
$\nu \leq_{\mathrm{a}} \lambda: \Longleftrightarrow(\forall \epsilon>0)\left(\exists h \in P^{(1)}\right)(\forall c)\left(c \in \operatorname{dom} \nu \Longrightarrow c \in(\lambda \circ h)^{-1} B(\nu(c) ; \epsilon)\right)$. $\operatorname{dom}\left(\nu_{0} \oplus \nu_{1}\right):={\underset{i}{i}}_{i}\left(2 \operatorname{dom} \nu_{i}+i\right), \quad \nu_{0} \oplus \nu_{1}(2 a+i):=\nu_{i}(a)$
$\nu \in \mathcal{I}_{\mathrm{d}}$ compact if any finite open cover $\left(U_{i}\right)_{1}^{r}$ admits some $f \in P^{(1)}$ with

$$
\begin{equation*}
\operatorname{dom} \nu \subseteq f^{-1}[r] \wedge(\forall a \in \operatorname{dom} \nu)\left(\nu(a) \in U_{f(a)}\right) \tag{1}
\end{equation*}
$$

Proposition 3. Let X be a separable metric space, ρ_{ν} the Cauchy representation for $\nu \in \mathcal{I}_{d}$. For any $\nu, \lambda \in \mathcal{I}_{d}$ and $\delta, \rho \in \mathcal{R}_{X}$,

1. $\nu \leq a \lambda \Longleftrightarrow \rho_{\nu} \leq a \rho_{\lambda}$
2. $\delta \leq \rho \Longrightarrow \delta \leq a \rho$
3. $\delta \sqcup \rho$ is a least upper bound of $\{\delta, \rho\}$ w.r.t. $\leq a$
4. $\nu \oplus \lambda$ is a least upper bound of $\{\nu, \lambda\}$ w.r.t. $\leq a$

Proof of (3): First apply (2) in $\delta_{i} \leq \delta_{0} \sqcup \delta_{1}$ $(i<2)$. If also $\delta_{i} \leq a \rho$, say via F_{i} at precision $\epsilon(i<2)$, then $\delta_{0} \sqcup \delta_{1} \leq$ a ρ at precision ϵ via $F: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, i . p \mapsto F_{i}(p)$.

Each \leq_{a} also reflexive and transitive. Thus above operations give rise to upper semilattice structures, on $\mathcal{R}_{X} / \equiv{ }_{\mathrm{a}}, I_{\mathrm{a}}:=\mathcal{I}_{\mathrm{d}} / \equiv \mathrm{a}$ and $\left(\mathcal{I}_{\mathrm{d}} \cap X^{\mathbb{N}}\right) / \equiv \mathrm{a}$. If X compact, analogue of Lemma 1 for dense partial sequences implies compact $\nu \in \mathcal{I}_{\mathrm{d}}$ form a least element of I_{a} (later we show there exists compact $\nu \in \mathcal{I}_{\mathrm{d}}$).
Proposition 4. 1. $\rho_{\leq} \not \mathbb{Z}_{a} \rho_{>}$
2. $\rho \leq a \rho_{C f}$
3. $\rho_{<} \leq a \rho_{\leq}$and symmetrically (replace $<, \leq$by $>, \geq$).

Hence $\rho \leq a \rho_{C f}, \rho_{\leq}, \rho_{\geq}$and $\rho_{b, n} \leq a \rho_{C f}, \rho_{\geq}, \rho_{\leq}$and (3) are the only $\leq a-r e d u c t i o n s ~ n o t ~ s h o w n ~ i n ~ t h e ~ l e f t ~ f i g u r e . ~$

Proof. (1): Let F realise $\rho_{\leq} \leq_{a} \rho_{>}$to precision ϵ; where $p \in \rho_{\leq}^{-1}\{x\}$ enumerates all rationals $\leq x, q=F(p)$ enumerates strict right Dedekind cut of some y s.t. $|x-y|<$ ϵ. q_{0} is output after finitely many steps, with only finite prefix p^{N} of p read from input. Let $p^{\prime} \in \rho_{\leq}^{-1}\{z\}$ for some $z \geq \nu_{\mathbb{Q}}\left(q_{0}\right)+\epsilon(>y+\epsilon>x)$ with $\left(p^{\prime}\right)^{N}=p^{N}$. Then $F\left(p^{\prime}\right)_{0}=q_{0}$, so $\left(\rho_{<} \circ F\right)\left(p^{\prime}\right)<\nu_{\mathbb{Q}}\left(q_{0}\right) \leq z-\epsilon$, contradiction.
(3): Recall the \mathbf{T}_{0}-topology $\tau_{<}=\{(x, \infty) \mid x \in \mathbb{R}\} \cup$ $\{\emptyset, \mathbb{R}\}$ on \mathbb{R} (with respect to which $\rho_{<}$is admissible) and the following
Lemma 5. For any $D \subseteq \mathbb{R}$, a function $f: \subseteq \mathbb{R} \rightarrow \mathbb{R}$ with dom $f=D$ is ($\tau_{<}, \tau_{<}$)-continuous iff it is left-continuous and nondecreasing.

We specify f which is ($\rho_{<}, \rho_{\leq}$)-computable and lies in the open ϵ-envelope of id $\mathbb{R}_{\mathbb{R}}$. First, consider $f: \mathbb{R} \rightarrow \mathbb{R}$ as in Lemma 5 which is also piecewise constant: take $f(t)=$ c_{i} for $t_{i}<t \leq t_{i+1}$ where strictly increasing $\left(c_{i}\right)_{i \in \mathbb{Z}},\left(t_{i}\right)_{i \in \mathbb{Z}}$ have inf $t_{i}=-\infty$, sup $t_{i}=\infty, c_{i}-\epsilon \leq t_{i} \wedge t_{i+1}<c_{i}+\epsilon(i \in \mathbb{Z})$. If $\left(t_{i}\right)_{i}$ are uniformly right-computable and $\left(c_{i}\right)_{i}$ uniformly leftcomputable then f is ($\rho_{<}, \rho_{<}$)-computable. If $\left(c_{i}\right)_{i \in \mathbb{Z}} \subseteq$ $\mathbb{R} \backslash \mathbb{Q}$ then any ($\rho_{<}, \rho_{<}$)-realiser of f also ($\rho_{<}, \rho_{\leq}$)-realises it. For instance, if $\epsilon=2^{-j+\frac{1}{2}}$ we can take $t_{n}:=n \epsilon$, $c_{n}:=t_{n}+\frac{\epsilon}{2}=\frac{2 n+1}{2} \epsilon(\notin \mathbb{Q}), n \in \mathbb{Z}$.

Note now that (1) (with transitivity of \leq_{a}) implies $\delta_{0} \not Z_{a}$ δ_{1} for all $\left(\delta_{0}, \delta_{1}\right) \in\left\{\rho_{\leq}, \rho_{<}, \rho_{\mathrm{Cn}}\right\} \times\left\{\rho_{\mathrm{Cf}}, \rho_{\mathrm{b}, n}, \rho_{\geq}, \rho_{,}, \rho_{>}\right\}$. With symmetric version (exchanging $<, \leq$ with $>, \geq$), shows $\rho_{\mathrm{Cn}} \mathbb{Z}_{a}$ δ for all $\delta \in S \backslash\left\{\rho_{\mathrm{Cn}}\right\}$, where $S:=\left\{\rho_{\mathrm{Cf}}, \rho_{\leq}, \rho_{\geq}, \rho_{\mathrm{b}, n}, \rho_{,}, \rho_{<}, \rho_{>}, \rho_{\mathrm{Cn}}\right\}$ (for convenience we fix n), while $\delta \leq \rho_{\mathrm{Cn}}$ for all $\delta \in S$. For $\delta_{0} \in\left\{\rho_{\leq}, \rho_{\geq}\right\}$again (1) and figure completely determine either $\delta_{0} \not \mathbb{Z}_{\mathrm{a}} \delta_{1}$ or $\delta_{0} \leq \delta_{1}$ as $\delta_{1} \in S$ varies. Case $\delta_{0} \in\left\{\rho_{<}, \rho_{>}\right\}$is similar except where (3) and its symmetric version apply. So assume $\delta_{0} \in\left\{\rho_{\mathrm{Cf}}, \rho_{\mathrm{b}, n}, \rho\right\}$, and $\delta_{1} \in S \backslash\left\{\rho_{<}, \rho_{>}, \rho_{\mathrm{Cn}}\right\}$ (otherwise $\delta_{0} \leq \delta_{1}$). By (2) we already have $\delta_{0} \leq_{a} \delta_{1}$, which completes the proof.

From the figure ($\rho \equiv_{\mathrm{a}} \rho_{\mathrm{b}, n} \equiv_{\mathrm{a}} \rho_{\mathrm{Cf}}$) and known facts it follows \leq_{a} does not imply continuous reducibility \leq_{t} (nor does \equiv a guarantee the same final topology). The converse inclusion $\left(\leq_{t}\right) \subseteq\left(\leq_{a}\right)$ also fails in general, using next construction from [?] (with Proposition 3(1)).
Definition 6. Let (Y, ν) be a numbered set with $|Y| \geq 2$ and fix $x, y \in Y$ with $x \neq y$. For each $A \subseteq \mathbb{N}$ write $\nu^{A}(2 k+i)=\nu_{x, y}^{A}(2 k+i):= \begin{cases}\nu(k), & \text { if } i=0 \wedge k \in \operatorname{dom} \nu, \\ x, & \text { if } i=1 \wedge k \in A, \\ y, & \text { if } i=1 \wedge k \in \mathbb{N} \backslash A\end{cases}$ ($i<2$).

Iterating, we can compare towers constructed this way. First consider a generalisation of compact $\nu \in \mathcal{I}_{\mathrm{d}}$.

Definition 7. Let X be a separable metric space. $\nu \in \mathcal{I}_{\mathrm{d}}$ separating at finite precision if for any distinct $x, y \in X$ there exist open cover $\left(U_{i}\right)_{1}^{r}$, $V, W \in \mathcal{T}_{X}, h \in P^{(1)}$ with
$x \in V \wedge y \in W \wedge\left(\forall c \in \nu^{-1}(V \cup W)\right)\left(c \in h^{-1}[r] \wedge \nu(c) \in U_{h(c)}\right) \wedge$

$$
\left\{i \mid U_{i} \cap V \neq \emptyset \neq U_{i} \cap W\right\}=\emptyset .
$$

Theorem 8. Let X be a separable metric space, $\nu_{0}, \ldots, \nu_{n}, \lambda, \lambda^{\prime} \in \mathcal{I}_{d}, A_{i}, B \subseteq \mathbb{N}(i<n \in \mathbb{N}), E_{n}:=\left\{x_{i}, y_{i} \mid\right.$ $i<n\} \subseteq X$ and $x, y \in X$ distinct. Suppose ν_{0} separating a.f.p., $\nu_{i+1}=\left(\nu_{i}\right)_{x_{i, y} y_{i}}^{A_{i}}$ for all $i<n$ and $\lambda^{\prime}=\lambda_{x, y}^{B}$. If $E_{n} \cap\{x, y\}=\emptyset$ and B is nonrecursive then $\lambda^{\prime} \mathbb{Z}_{a} \nu_{n}$.

Proof. Fix $\left(U_{i}\right)_{1}^{r}, V, W, h$ as in definition of separation a.f.p., and pick $\epsilon>0$ suff. small that $B(x ; \epsilon) \subseteq V \wedge B(y ; \epsilon) \subseteq W \wedge N_{\epsilon}\left(E_{n}\right) \cap\{x, y\}=\emptyset$. Also suppose $\left.\lambda^{\prime}\right|_{2 \mathbb{N}+1} \leq_{a} \nu_{n}$ at precision ϵ via $f \in P^{(1)}$. Write $k \in \mathbb{N}, a=f(2 k+1)=\sum_{i=0}^{n} a_{i} 2^{i}$ where $a_{n} \in \mathbb{N},\left(a_{i}\right)_{i<n} \subseteq\{0,1\}$. The last requirement on ϵ means $\lambda^{\prime}(2 k+1) \in\{x, y\} \Longrightarrow \nu_{n}(a) \in \operatorname{im} \nu_{0} \backslash E_{n}$ and $a_{i}=0$ for $i<n$ (inductively for $m=n, \ldots, 1$, use
$\operatorname{im} \nu_{0} \backslash E_{n} \ni \nu_{m}\left(\sum_{j=0}^{m} b_{j^{2}}{ }^{j}\right)=\nu_{m-1}^{A_{m-1}}\left(\sum_{j=1}^{m} b_{j} 2^{j}\right)=\nu_{m-1}\left(\sum_{j<m} b_{j+1} 2^{j}\right)$
where $\left.\left(b_{j}\right)_{0}^{m}=\left(a_{i}\right)_{0}^{n},\left(a_{i+1}\right)_{0}^{n-1}, \ldots,\left(a_{i+n-1}\right)_{0}^{1}\right)$. So, we get $\nu_{n}(a)=\nu_{n}\left(a_{n} 2^{n}\right)=\cdots=\nu_{1}\left(a_{n} 2^{1}\right)=\nu_{0}\left(a_{n}\right)$ while $g: k \mapsto a_{n}=\left\lfloor 2^{-n} f(2 k+1)\right\rfloor$ is computable with $\operatorname{im} g \subseteq \operatorname{dom} \nu_{0}$.
$\left(\lambda^{\prime}(2 k+1)=x \Longrightarrow g(k) \in h^{-1} B_{0}\right) \wedge\left(\lambda^{\prime}(2 k+1)=\right.$ $\left.y \Longrightarrow g(k) \in h^{-1} B_{1}\right)$ for all $k \in \mathbb{N}$ where $B_{0}:=\{i$ $\left.B(x ; \epsilon) \cap U_{i} \neq \emptyset\right\}$ and $B_{1}:=\left\{i \mid B(y ; \epsilon) \cap U_{i} \neq \emptyset\right\}$. In particular, $B \leq \mathrm{m} B_{0}$ via $h \circ g$, which implies B recursive, a contradiction. So, $\lambda^{\prime} \not \mathbb{Z}$ a ν_{n}. Lemma 9. 1. $A \leq m B \Longrightarrow \nu^{A} \leq \nu^{B}$,
2. If $x \neq y \wedge\left\{x_{i}, y_{i} \mid i<n\right\} \cap\{x, y\}=\emptyset \wedge \emptyset \neq A \neq$ $\mathbb{N} \wedge(\forall i<n)\left(\nu_{i+1}=\left(\nu_{i}\right)_{x_{i}, y_{i}}^{A_{i}}\right)$ and $\lambda_{x, y}^{B} \leq a\left(\nu_{n}\right)_{x, y}^{A}$ where ν_{0} separating a.f.p. then $B \leq m A$.

Proof. (1): Fix $f \in R^{(1)}$ such that $A=f^{-1} B$ and let $g: \mathbb{N} \rightarrow \mathbb{N}, 2 k+i \mapsto\left\{\begin{array}{ll}2 k, & \text { if } i=0, \\ 2 f(k)+1, & \text { if } i=1\end{array}\right.$. Then one checks $\nu^{A} \leq \nu^{B}$ via g.
(2): Fix $\left(U_{i}\right)_{1}^{r}, V, W, h$ as in definition of separation a.f.p. (for $x \neq y$), $\epsilon>0$ such that $B(x ; \epsilon) \subseteq$
$V \wedge B(y ; \epsilon) \subseteq W \wedge N_{\epsilon}\left(E_{n}\right) \cap\{x, y\}=\emptyset$ where $E_{n}:=$ $\left\{x_{i}, y_{i} \mid i<n\right\}$. Let $g \in P^{(1)}$ witness $\lambda^{B} \leq_{\mathrm{a}}\left(\nu_{n}\right)^{A}$ at precision ϵ and denote $l: \mathbb{N} \rightarrow \mathbb{N}, k \mapsto\left\lfloor\frac{1}{2} g(2 k+1)\right\rfloor$, $C_{i}:=\{k \in \mathbb{N} \mid g(2 k+1) \equiv i(\bmod 2)\} \quad(i=0,1)$. Also let $B_{0}:=\left\{i \mid B(x ; \epsilon) \cap U_{i} \neq \emptyset\right\}, B_{1}:=\left\{i \mid B(y ; \epsilon) \cap U_{i} \neq \emptyset\right\}$, and choose $c \in A, d \in \mathbb{N} \backslash A, m: k \mapsto\left\lfloor 2^{-n} l(k)\right\rfloor$ and $f: \mathbb{N} \rightarrow \mathbb{N}, k \mapsto \begin{cases}c, & \text { if } k \in C_{0} \wedge m(k) \in h^{-1} B_{0}, \\ d, & \text { if } k \in C_{0} \wedge m(k) \in h^{-1} B_{1}, \\ l(k), & \text { if } k \in C_{1}\end{cases}$ plainly C_{0}, C_{1} are disjoint recursive sets (with union \mathbb{N}), so $f \in P^{(1)}$. We show $f \in R^{(1)}$ with $(\forall k)(k \in B \Longleftrightarrow f(k) \in A)$.

Firstly, if $k \in C_{0}$ then

$$
\begin{aligned}
\epsilon & >d\left(\lambda^{B}(2 k+1),\left(\nu_{n} \circ l\right)(k)\right) \\
& \Longrightarrow\left(\nu_{n} \circ l\right)(k) \in \operatorname{im} \nu_{0} \backslash E_{n} \\
& \Rightarrow l(k)=a_{n} 2^{n}
\end{aligned}
$$

where $a_{n}=m(k)$. So $\left(\nu_{n} \circ l\right)(k)=\nu_{n}\left(a_{n} .2^{n}\right)=$ $\cdots=\nu_{0}\left(a_{n} .2^{0}\right)=\left(\nu_{0} \circ m\right)(k)$ (this also shows $C_{0} \subseteq m^{-1}$ dom $\left.\nu_{0}\right)$. Now definition of B_{0}, B_{1}
implies $\left(\lambda^{B}(2 k+1)=x \Longrightarrow m(k) \in h^{-1} B_{0}\right) \wedge\left(\lambda^{B}(2 k+\right.$ 1) $\left.=y \Longrightarrow m(k) \in h^{-1} B_{1}\right)$, so $k \in C_{0}$ implies $k \in B \Longleftrightarrow f(k) \in A$. For $k \in C_{1}$, instead $\lambda_{x, y}^{B}(2 k+1)=\left(\left(\nu_{n}\right)_{x, y}^{A} \circ g\right)(2 k+1)$ with $k \in B \Longleftrightarrow$ $l(k) \in A$ (this uses $d(x, y) \geq \epsilon$). So f has the properties required.

In particular, for any ν_{n}, x, y as above, the map $\alpha: A \mapsto\left(\nu_{n}\right)_{x, y}^{A}$ induces an embedding of $\leq \mathrm{m}^{-}$ degrees in \leq a-degrees with least element $\left[\nu_{n}\right]_{\equiv_{a}}$.

Randomness and density

Definition 10. Consider a bounded effective metric space (X, d, ν_{0}). A denseness test (A, a, j) has $A \subseteq \mathbb{N}$ infinite c.e., $a \in \operatorname{dom} \nu_{0}, j \in \mathbb{N} ; \xi \in$ $X^{\mathbb{N}}$ fails (A, a, j) if $\xi \in \cap_{l \in A} X^{\mathbb{N}} \backslash \sigma^{-l}\left(\alpha\langle a, j\rangle \times X^{\mathbb{N}}\right)$, passes (A, a, j) if $\xi \in \cup_{l \in A} \sigma^{-l}\left(\alpha\langle a, j\rangle \times X^{\mathbb{N}}\right)$; these define resp. closed, open sets in $X^{\mathbb{N}}$.
$\mathcal{I}_{d}^{\text {rand }}:=\left\{\xi \in X^{\mathbb{N}} \mid \xi\right.$ passes all denseness tests $\}$.

We introduce another generalisation of the definition of compact sequences.
Definition 11. Suppose X a separable metric space, $\left(U_{i}\right)_{1}^{r}$ a finite open cover, $\epsilon>0$ with each $N_{\epsilon}\left(U_{i}\right)$ nondense and $\nu \in \mathcal{I}_{\mathrm{d}}, f \in P^{(1)}$ s.t. (1) holds. Then ν is properly covering.

If $\nu \in \mathcal{I}_{\mathrm{d}}$ is properly covering then $|X| \geq 2$; any separating a.f.p. dense sequence in a compact space X with $|X| \geq 2$ is properly covering.

Proof. For each $x \in X$ we have $\left(U_{i}(x)\right)_{1}^{r_{x}}, \mathcal{T}_{X} \ni$ $V_{x} \ni x$ and $h_{x} \in P^{(1)}$ s.t. $\left(\forall c \in \nu^{-1} V_{x}\right)\left(\nu(c) \in U_{h_{x}(c)}(x)\right)$. By compactness there exist s and $\left(x_{i}\right)_{i<s} \subseteq X$ with $X=\cup_{i<s} V_{x_{i}}$. We can take a formal disjoint union of $\left(U_{j}\left(x_{i}\right)\right)_{j \in\left[r_{x_{i}}\right]}(i<s)$, say $\left(U_{i}\right)_{i \in[r]}$ where $r:=\sum_{i<s} r_{x_{i}}$, and by adding appropriate constants to each $h_{x_{i}}(i<s)$ we get $h \in P^{(1)}$ with $(\forall c \in \operatorname{dom} \nu)\left(\nu(c) \in U_{h(c)}\right)$.

Proper covering does not imply separation at finite precision.

Proposition 12. 1. Suppose $\nu_{0}, \ldots, \nu_{n} \in \mathcal{I}_{d}$, $(\forall i<$ $n)\left(\nu_{i+1}=\left(\nu_{i}\right)_{x_{i}, y_{i}}^{A_{i}}\right), \nu_{0}$ total \& properly covering, and $\lambda \in \mathcal{I}_{d}^{\text {rand }}$. Then $\lambda \not \mathbb{Z}_{a} \nu_{n}$.
2. Suppose $|X| \geq 2$. For any $\nu \in \mathcal{I}_{d}^{\text {rand }}$ there exists $\lambda \in X^{\mathbb{N}} \backslash \mathcal{I}_{d}^{\text {rand }}$ with $\nu \leq \lambda$.
3. $\mathcal{I}_{d}^{\text {rand }}$ is closed under \oplus.

Proof. (1): Suppose $\lambda \leq a \nu_{n}$ via $f \in P^{(1)}$ at precision ϵ, where ϵ suff. small that $N_{\epsilon}\left(\left\{x_{i}, y_{i}\right\}\right)$ and $N_{\epsilon}\left(U_{j}\right)$ nondense for each $i<n$ and each $j \in[r]$, for some open cover $\left(U_{j}\right)_{1}^{r}$. We have dom $\nu_{n}=\mathbb{N}=\dot{U}_{i<n} A_{i} \dot{\cup} 2^{n} \mathbb{N}$ where each A_{i} is infinite c.e. with $\nu_{n}\left(A_{i}\right)=\left\{x_{i}, y_{i}\right\} \subseteq \operatorname{im} \nu_{i+1}$ $(i<n)$. Since λ total, $f \in R^{(1)}$ with some $A_{i} \cap \operatorname{im} f(i<n)$ or $2^{n} \mathbb{N} \cap \operatorname{im} f$ infinite (by pigeonhole principle). Each of these sets is c.e. If $A_{i} \cap \operatorname{im} f$ infinite, its ν_{n}-image $\left(\subseteq\left\{x_{i}, y_{i}\right\}\right)$ lies within ϵ of $\lambda\left(f^{-1} A_{i}\right)$ which is dense, contradicting choice of ϵ. If $2^{n} \mathbb{N} \cap \operatorname{im} f$ infinite, let h be as in definition of ν_{0} for cover $\left(U_{i}\right)_{1}^{r}$. Then
each $h^{-1}\{i\}$ is c.e., so $f^{-1}\left(2^{n}\left(h^{-1}\{i\}\right)\right)$ is c.e., and at least one such set is infinite, so has λ image dense $\& \subseteq N_{\epsilon}\left(U_{i}\right)$ (contradicting choice of $\left.\left(U_{i}\right)_{1}^{r}, h\right)$.
(2): For any $\nu \in \mathcal{I}_{d}^{\text {rand }} \nexists \lambda$ we have $\nu \oplus \lambda \notin$ $\mathcal{I}_{\mathrm{d}}^{\text {rand }}$. Such λ can always be found e.g. as a nondense total sequence (extend \oplus definition). (3): Let $\lambda_{0}, \lambda_{1} \in \mathcal{I}_{\mathrm{d}}^{\text {rand }}$. For any denseness test (A, a, j) we have some $i<2$ such that $A \cap(2 \mathbb{N}+i)$ is infinite. Clearly $\lambda_{i} \leq \lambda_{0} \oplus \lambda_{1}$ via (injective total recursive) $h: k \mapsto 2 k+i$, and $B:=h^{-1}(A \cap(2 \mathbb{N}+i))$ is infinite c.e. We know λ_{i} passes the denseness test (B, a, j), say $k \in B \cap \lambda_{i}^{-1} \alpha\langle a, j\rangle$, so $\left(\lambda_{0} \oplus \lambda_{1}\right)(h(k))=\lambda_{i}(k)$ shows $\lambda_{0} \oplus \lambda_{1}$ passes (A, a, j).

Remains to establish $\mathcal{I}_{\mathrm{d}}^{\text {rand }} \neq \emptyset$. For topological space Y, a continuous surjection $T: Y \rightarrow Y$ is one-sided topologically mixing if
$\left(\forall U, V \in \mathcal{T}_{Y} \backslash\{\emptyset\}\right)(\exists N \in \mathbb{N})(\forall n)\left(n \geq N \Longrightarrow T^{n}(U) \cap V \neq \emptyset\right)$.
One checks
Lemma 13. For any separable metrizable X and $Y=X^{\mathbb{N}}$, left shift $\sigma: Y \rightarrow Y$ is one-sided topologically mixing (w.r.t. product topology).

More generally, consider a complete effective metric space (Y, d, ν) with ideal ball numbering α and continuous one-sided top. mixing $T: Y \rightarrow Y$. By definition, each $\cup_{m \in A} T^{-m} V$ dense ($V \in \mathcal{T}_{Y} \backslash\{\emptyset\}$, A infinite), so in particular $R_{A}:=\cap_{a \in \operatorname{dom} \alpha} \cup_{m \in A} T^{-m} \alpha(a)$ and $R:=\cap\left\{R_{A} \mid\right.$ A infinite c.e. $\}$ dense \mathcal{G}_{δ} in Y (by Baire category theorem). We now apply to $Y=X^{\mathbb{N}}$. Recall a formal inclusion \sqsubset of total basis numberings α, β of space X has the weak basis property if $(\forall b)(\forall x \in X)(\exists a)(x \in \beta(b) \Longrightarrow x \in \alpha(a) \wedge a \sqsubset b)$.

Proposition 14. Let (X, d, ν_{0}) be a complete bounded effective metric space with ν_{0} total, and equip $X^{\mathbb{N}}$ with the (bounded) product metric $\widehat{d}(\xi, \eta):=\sum_{i \in \mathbb{N}} 2^{-i-1} d\left(\xi_{i}, \eta_{i}\right)$ and dense sequence $\gamma: \mathbb{N} \rightarrow X^{\mathbb{N}}$ defined by $\gamma(\langle w\rangle)(i):=$ $\left\{\begin{array}{ll}\nu_{0}\left(w_{i}\right), & \text { if } i<|w|, \\ \nu_{0}(i), & \text { if } i \geq|w|\end{array}\right.$. Then basis numberings defined by

$$
\begin{aligned}
\alpha_{X^{\mathbb{N}}}: \mathbb{N} & \rightarrow \mathcal{T}_{X^{\mathbb{}}},\langle a, r\rangle \mapsto B_{\hat{d}}\left(\gamma(a) ; \nu_{\mathbb{Q}^{+}}(r)\right), \\
\beta: \mathbb{N} & \rightarrow \mathcal{T}_{X^{\mathbb{}}},\langle a, r, N\rangle \mapsto \prod_{i<N} B_{d}\left(\gamma(a)_{i} ; \nu_{\mathbb{Q}^{+}}(r)\right) \times X^{\mathbb{N}}
\end{aligned}
$$

are effectively equivalent, and any $\xi \in X^{\mathbb{N}}$ has

$$
\left(\left.\left.\left.\left(\sigma^{l} \xi\right)_{l \in \mathbb{N}} \in \mathcal{I}_{d}^{\text {rand }}\right|^{X^{\sharp}} \Longleftrightarrow \xi \in R\right|^{X^{\#}, \sigma} \Longrightarrow \xi \in \mathcal{I}_{d}^{\text {rand }}\right|^{X}\right) ;
$$

in particular $\mathcal{I}_{d}^{\text {rand }}{ }^{X}$ is residual in $X^{\mathbb{N}}$.
Proof. It is convenient to use the following binary relations on \mathbb{N} :

$$
\begin{gathered}
\langle a, r\rangle \sqsubset\langle b, q, N\rangle: \Longleftrightarrow \max _{i<N} d\left(\gamma(a)_{i}, \gamma(b)_{i}\right)+2^{i+1} \nu_{Q^{+}}(r)<\nu_{\mathbb{Q}^{+}}(q), \\
\langle a, r, N\rangle \sqsubset^{\prime}\langle b, q\rangle: \Longleftrightarrow \sum_{i<N} 2^{-i-1}\left(\nu_{Q^{+}}(r)+d\left(\gamma(a)_{i}, \gamma(b)_{i}\right)\right) \\
+C_{0} .2^{-N}<\nu_{\mathbb{Q}^{+}}(q) ;
\end{gathered}
$$

here $\mathbb{Q}^{+} \ni C_{0} \geq \operatorname{diam}(X, d)$ is a fixed bound. We first check $\sqsubset, \sqsubset^{\prime}$ are c.e. formal inclusions (of $\alpha_{X^{\mathbb{N}}}$ in β, resp. of β in $\alpha_{X^{\mathbb{N}}}$), each with the weak basis property.

Next denote $B_{\langle a, r\rangle}:=\{\langle b, q\rangle \mid\langle b, q\rangle \sqsubset\langle\langle a\rangle, r, 1\rangle\} \quad(a, r \in$ \mathbb{N}). Clearly $B_{\langle a, r\rangle}$ is nonempty and c.e. uniformly in $a, r \in \mathbb{N}$, and for any $A \subseteq \mathbb{N}$ the condition $(\forall a, r)\left(\xi \in \cup_{l \in A} \sigma^{-l}\left(\alpha\langle a, r\rangle \times X^{\mathbb{N}}\right)\right)$ is equivalent to $(\forall a, r)\left(\exists\langle b, q\rangle \in B_{\langle a, r\rangle}\right)\left(\xi \in \cup_{l \in A} \sigma^{-l} \alpha_{X}\langle\langle, q\rangle)\right.$. In particular, this is implied by $(\forall b, q)\left(\xi \in \cup_{l \in A} \sigma^{-l} \alpha_{X^{\Downarrow}}\langle b, q\rangle\right)$, or equivalently $(\forall b, q)(\exists k \in A)\left(\left(\sigma^{l+k} \xi\right)_{l \in \mathbb{N}} \in \alpha_{X^{\Omega}}\langle b, q\rangle \times\left(X^{\mathbb{N}}\right)^{\mathbb{N}}\right)$. Quantifying over infinite c.e. A, thus $\left(\left.\xi \in R\right|^{X^{N}, \sigma} \Longleftrightarrow\right.$) $\left.\left(\sigma^{l} \xi\right)_{l \in \mathbb{N}} \in \mathcal{I}_{\mathrm{d}}^{\text {rand }}\right|^{X^{N}}$ implies $\left.\xi \in \mathcal{I}_{\mathrm{d}}^{\text {rand }}\right|^{X}$.

Example: $X=\{0,1\}$ corresponds (easily checked) to $\left.\mathcal{I}_{\mathrm{d}}^{\text {rand }}\right|^{X}=\left\{\chi_{B} \mid B \subseteq \mathbb{N}\right.$ bi-immune $\}$, i.e. those sets B for which neither B nor $\mathbb{N} \backslash B$ contains an infinite c.e. set.

Comparison with other tests

For any $A \subseteq \mathbb{N}, N \in \Pi_{1}^{0}(X)$ denote

$$
F_{A, N}:=\prod_{i \in \mathbb{N}} W_{i} \text { where } W_{i}=\left\{\begin{array}{ll}
X, & \text { if } i \notin A, \\
N, & \text { if } i \in A
\end{array} .\right.
$$

$F_{A, X \backslash \alpha a, j\rangle}=\{\xi \mid \xi$ fails $(A, a, j)\}$ for denseness test (A, a, j),
$X^{\mathbb{N}} \backslash \mathcal{I}_{\mathrm{d}}^{\text {rand }}=\cup\left\{F_{A, N} \mid A\right.$ infinite c.e., $\left.N=X \backslash \alpha\langle a, j\rangle, a, j \in \mathbb{N}\right\}$.
??For X effectively compact,

$$
f:\{0,1\}^{\mathbb{N}} \times \mathcal{K}_{>}(X) \rightarrow \mathcal{K}_{>}\left(X^{\mathbb{N}}\right),\left(\chi_{A}, K\right) \mapsto F_{A, K}
$$

computable. More generally, suppose $|X| \geq 2$. If μ_{0} is a measure positive on nonempty open sets, for any test (A, a, j) we have $\mu_{0}\left(X \backslash B_{0}\right)<1$ for $B_{0}:=\alpha\langle a, j\rangle$, so $F_{A, X \backslash B_{0}}$ is a closed λ nullset. Here λ is the product measure on $X^{\mathbb{N}}$ corresponding to measure μ_{0} on X; also one can show λ a computable probability measure if μ is and X bounded complete.

Effectiveness and approximability

When choosing naming system γ for a given space Y, several types of requirements [?, §2.7]:
(a) require $f_{i}: \subseteq X_{i} \rightarrow Y$ computable ($i \in I$)
(b) require $f_{i}: \subseteq Y \rightarrow Z_{i}$ computable ($i \in I$)
(c) require operations $f_{i}: \subseteq Y^{n_{i}} \rightarrow Y$ computable ($i \in I$)

For example, types (a)+(c) and (b) resp. addressed by Proposition 15. Fix represented sets (X_{i}, ρ_{i}), maps $f_{i}: \subseteq$ $X_{i} \rightarrow Y, g_{i}: \subseteq Y \rightarrow Y \quad(i \in \mathbb{N}) \&$ suppose
$Y=\cup_{i \in \mathbb{N}, w \in \mathbb{N} \cdot} \hat{g}_{w}\left(\operatorname{im} f_{i} \cap d o m \widehat{g}_{w}\right)$ where $\hat{g}_{w}:=g_{w_{w \mid-1}} \circ \ldots \circ \mathrm{~g}_{w_{0}}$. $\delta: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow Y$ defined by dom $\delta=\dot{U}_{i \in \mathbb{N}, w \in \mathbb{N}} \cdot i .\langle w\rangle .\left(\rho_{i}^{-1} f_{i}^{-1} \operatorname{dom} \hat{g}_{w}\right)$ and $\delta(i .\langle w\rangle . p):=\left(\hat{g}_{w} \circ f_{i} \circ \rho_{i}\right)(p)$ has $\delta \in \mathcal{R}_{Y} . f_{i}$ is ($\left.\rho_{i}, \delta\right)-$ computable and g_{i} is (δ, δ)-computable $(i \in \mathbb{N})$.
Proposition 16. Fix represented sets (Y_{i}, δ_{i}), $f_{i}: \subseteq X \rightarrow$ $Y_{i}(i \in \mathbb{N})$ where $|X| \leq 2^{\aleph_{0}}$. Then there exists $\rho \in \mathcal{R}_{X}$ such that each f_{i} is strongly (ρ, δ_{i})-computable ($i \in \mathbb{N}$). More sophisticated results for type (c), see [?, Thm 2.7.15], [?], [?].

For requirements of type (a)+(b) or (b)+(c), in general there exist counterexamples:
Proposition 17. 1. there exist sets X, Y, Z, maps $f: \subseteq$ $X \rightarrow Y, g: \subseteq Y \rightarrow Z$ and total numberings ν, μ of X, Z respectively, such that
$\neg(\exists \lambda: \subseteq \mathbb{N} \rightarrow Y)(f \circ \nu \leq \lambda \wedge g \circ \lambda \leq \mu)$.
2. there exist sets Y, Z, maps $f: \subseteq Y \rightarrow Y, g: \subseteq Y \rightarrow Z$ and total numbering μ of Z such that $\neg(\exists \lambda \in \operatorname{TN}(Y))(f \circ \lambda \leq \lambda \wedge g \circ \lambda \leq \mu)$.
3. there exist separable metric spaces Y, Z, maps $f: \subseteq$ $Y \rightarrow Y, g: \subseteq Y \rightarrow Z$ and $\mu \in \mathcal{I}_{d}^{Z} \cap Z^{\mathbb{N}}$ such that $\neg\left(\exists \lambda \in \mathcal{I}_{d}^{Y}\right)(f \circ \lambda \leq \lambda \wedge g \circ \lambda \leq \mu)$.

Proof. (1): $X=Y=Z$ denumerable, $f=g=\mathrm{id}_{X}, \nu$ total injective numbering of X, μ a total numbering s.t. $\nu \mathbb{Z}$ μ (e.g. an incomparable total injective numbering, of which there are $2^{x_{0}}$; see [?]).
(2): $Y=Z$ denumerable, μ a total injective numbering, $h: \mathbb{N} \rightarrow \mathbb{N}$ a nonrecursive bijection with $N_{h}: \mathbb{N} \rightarrow \overline{\mathbb{N}}, k \mapsto$ \# Fix (h^{k}) not lower semicomputable, $f=\mu \circ h \circ \mu^{-1}$, $g=\mathrm{id}_{Y}$. If $\lambda \in \operatorname{TN}(Y)$ and $n \in P^{(1)}(\lambda, \mu)$-realises $g,=_{Y}$ is $[\lambda, \lambda]$-decidable via $\langle a, b\rangle \mapsto \delta_{n(a), n(b)}$ (since g, μ injective). So $N_{f, M}: \mathbb{N} \rightarrow \mathbb{N}, k \rightarrow \# \operatorname{Fix}\left(\left.f^{k}\right|_{\lambda(0, M)}\right)(M \geq 1)$ are uniformly effective provided also f is (λ, λ)-effective: consider

$$
a_{n}:=\mu a<M\left(\left(f^{k} \circ \lambda\right)(a)=\lambda(a) \notin\left\{\lambda\left(a_{i}\right) \mid i<n\right\}\right)
$$

with convention $\mu a<M$ (False) $=M$, inductively for $n \leq M$ and $N:=\mu n\left(a_{n}=M\right)(\leq M)$. Then $\left.\lambda\right|_{\left\{a_{i} \mid i<N\right\}}$ is injective with image $\operatorname{Fix}\left(\left.f^{k}\right|_{\lambda[0, M)}\right)$, so $N_{f, M}(k)=N$.

Further, $\left(f^{k} \circ \lambda\right)(a)=\lambda(a)$ iff $\left(h^{k} \circ \mu^{-1} \circ \lambda\right)(a)=\left(\mu^{-1} \circ\right.$ $\lambda)(a)$, so $\operatorname{Fix}\left(\left.h^{k}\right|_{\left(\mu^{-1} 0 \lambda\right][0, M)}\right)=\mu^{-1} \operatorname{Fix}\left(\left.f^{k}\right|_{\lambda[0, M)}\right)$. In unions over increasing $M, \operatorname{Fix}\left(h^{k}\right)=\mu^{-1} \mathrm{Fix}\left(f^{k}\right)$ and $N_{h}(k)=$ $\sup _{M} N_{f, M}(k)$. This contradicts choice of h.
(3): $Y=Z=\mathbb{R}, f=\mathrm{id}_{\mathbb{R}}+\alpha(\alpha \in \mathbb{R} \backslash \mathbb{Q}), g=\mathrm{id}_{\mathbb{R}}$, $\mu=\nu_{\mathbb{Q}}$. The only solution for $\lambda: \subseteq \mathbb{N} \rightarrow Y$ is then the empty partial sequence.

Next, consider (a),(b),(c) when maps are approximable rather than computable. Here $f: \subseteq$ $X \rightarrow Y$ approximable w.r.t. $\nu \in \mathcal{I}_{d}^{X}, \lambda \in \mathcal{I}_{d}^{Y}$ if $f \circ \nu \leq \mathrm{a} \lambda$ (extending definition of $\leq \mathrm{a}$).

If X uniformly discrete, (1), (2) transfer since $\nu \leq \lambda$ iff $\nu \leq a \lambda$ for any $\nu, \lambda \in \mathcal{I}_{\mathrm{d}}^{X}=\mathrm{TN}(X)$. If X compact, instead take $\nu_{0} \in \mathcal{I}_{\mathrm{d}}^{X}$ compact and pick $\nu, \mu \leq$ a-incomparable. Then
$\neg(\exists \lambda: \subseteq \mathbb{N} \rightarrow Y)(f \circ \nu \leq \mathrm{a} \lambda \wedge g \circ \lambda \leq \mathrm{a} \mu)$.

Lemma 18. If X compact, $\nu \in \mathcal{I}_{d}$ compact and $\pi: X \rightarrow Y$ a continuous surjection then $\pi \circ \nu$ is compact.

Proof. Uses Lebesgue numbers and uniform continuity of π; see [?].
Corollary 19. Let Y, Z be compact metric spaces, $f: Y \rightarrow Y, g: Y \rightarrow Z$ (total) continuous surjective and $\mu \in \mathcal{I}_{d}^{Z}$. For any compact $\lambda \in \mathcal{I}_{d}^{Y}$ we have $f \circ \lambda \leq a \lambda \wedge g \circ \lambda \leq a \mu$.

Proof. Follows from Lemma 18 and analogue of Lemma 1.

Given existence of compact $\lambda \in \mathcal{I}_{\mathrm{d}}^{Y}$, this is a positive result for requirements of type (b) + (c).

Requirements of type (a),(b)

For $\nu \in \mathcal{I}_{X}$ we denote the cylindrification by $\tilde{\nu}$: $\operatorname{dom} \tilde{\nu}=\langle\operatorname{dom} \nu, \mathbb{N}\rangle, \tilde{\nu}\langle i, j\rangle:=\nu(i)$. Proposition 20. Fix separable metric spaces X, Y_{i}, maps $\Psi_{i}: X \rightarrow Y_{i}$ and $\lambda_{i} \in \mathcal{I}_{d}^{Y_{i}}(i<n)$. There exists $\nu \in \mathcal{I}_{d}^{X}$ s.t. $(\forall i<n) \Psi_{i} \circ \nu \leq a \lambda_{i}$.

Proof. Fix $\nu_{0} \in \mathcal{I}_{\mathrm{d}} \cap X^{\mathbb{N}}$ and (for $i<n, k \in \mathbb{N}$)

$$
\begin{aligned}
& a_{k}^{(i)}:=\mu n\left(n \in \operatorname{dom} \tilde{\lambda}_{i} \wedge \neg(\exists j<k)\left(n=a_{j}\right) \wedge\right. \\
&\left.d\left(\left(\Psi_{i} \circ \nu_{0}\right)(k), \tilde{\lambda}_{i}(n)\right)<2^{-k}\right) .
\end{aligned}
$$

We denote $\nu\left\langle a_{k}^{(0)}, \ldots, a_{k}^{(n-1)}\right\rangle:=\nu_{0}(k)$, with ν undefined elsewhere. For any $\epsilon>0, \max _{i<n} d\left(\left(\Psi_{i}\right.\right.$ 。 $\left.\nu)\left\langle a_{k}^{(0)}, \ldots, a_{k}^{(n-1)}\right\rangle, \widetilde{\lambda}_{i}\left(a_{k}^{(i)}\right)\right)<\epsilon$ fails only for finitely many k (among those with $\epsilon \leq 2^{-k}$). We also have $\operatorname{im} \nu=\operatorname{im} \nu_{0}$ and $\tilde{\lambda}_{i} \equiv \lambda_{i}$ for each $i<n$.

Proposition 21. Let X, Y be separable metric spaces, $\psi: X \rightarrow Y, \nu \in \mathcal{I}_{d}^{X}, \lambda \in \mathcal{I}_{d}^{Y}$ as appropriate. Then:

1. for any ν there exists λ with $\Psi \circ \nu \leq \lambda$; if Ψ continuous onto Y, there exists λ with $\Psi \circ \nu \equiv \lambda$,
2. if Ψ open, for any λ there exists ν with $\Psi \circ \nu \leq \lambda$,
3. for any ν there exists λ with $\Psi \circ \nu \leq a \lambda$,
4. for any λ there exists ν with $\Psi \circ \nu \leq a \lambda$.

Proof. (2): Each $\Psi^{-1}\{\lambda(a)\}$ separable ($a \in \operatorname{dom} \lambda$) so if nonempty fix a dense subsequence $\left(x_{i}^{(a)}\right)_{i \in \mathbb{N}}$ and let $\nu\langle a, i\rangle:=x_{i}^{(a)} \quad(i \in \mathbb{N})$ (ν undefined elsewhere). Since Ψ open, $\Psi^{-1} \mathrm{im} \lambda$ is dense, hence so is im ν.

For (4), if Ψ onto we can construct $\nu \in \mathcal{I}_{\mathrm{d}}^{X}$ in a different way. First, pick $\nu_{0} \in \mathcal{I}_{\mathrm{d}}^{X} \cap X^{\mathbb{N}}$ and $\lambda \in \mathcal{I}_{\mathrm{d}}^{Y}$. Let $\operatorname{dom} \nu=\left\{a_{k} \mid k \in \mathbb{N}\right\}, \nu\left(a_{k}\right)=\nu_{0}(k)$ for $a_{k}:=\mu n\left(n \in \operatorname{dom} \tilde{\lambda} \wedge \neg(\exists j<k)\left(n=a_{j}\right) \wedge \tilde{\lambda}(n) \in U_{k}\right) \quad(k \in \mathbb{N})$
where $\left(U_{k}\right)_{k \in \mathbb{N}} \subseteq \mathcal{T}_{Y} \backslash\{\emptyset\}$ has the property $(\forall x \in$ $\operatorname{im} \lambda)(\forall N)(\exists k \geq N)\left(U_{k} \ni x\right)$. In place of dom $\nu \subseteq$ dom $\tilde{\lambda}$ we now have equality: for c_{l} the $l^{\text {th }}$ element of dom $\tilde{\lambda}$ in ascending order, and $N_{l}:=$ $\mu k\left(U_{k} \ni \tilde{\lambda}\left(c_{l}\right) \wedge\left(\forall l^{\prime}<l\right)\left(k>N_{l^{\prime}}\right)\right)$, we show $c_{l} \in\left\{a_{j} \mid j \leq\right.$ $\left.N_{l}\right\}(l \in \mathbb{N})$. First, $N_{0}=\mu k\left(U_{k} \ni \tilde{\lambda}\left(c_{0}\right)\right)$, so $\neg(\exists j<$ $\left.N_{0}\right)\left(c_{0}=a_{j}\right)\left(\right.$ as $\left.\tilde{\lambda}\left(a_{j}\right) \in U_{j}\right)$ and then $a_{N_{0}}=c_{0}$. Secondly, $a_{N_{l+1}}=\min \left(\tilde{\lambda}^{-1} U_{N_{l+1}}\right) \backslash\left\{a_{j} \mid j<N_{l+1}\right\}$ and $U_{N_{l+1}} \ni \tilde{\lambda}\left(c_{l+1}\right)$ so if $c_{l+1} \notin\left\{a_{j} \mid j \leq N_{l+1}\right\}$ then $a_{N_{l+1}}<$ c_{l+1}, implying $(\exists k \leq l) a_{N_{l+1}}=c_{k} \in\left\{a_{j} \mid j \leq N_{k}\right\}$. But then $N_{l+1}>N_{l} \geq N_{k}$ contradicts injectivity of $\left(a_{i}\right)_{i \in \mathbb{N}}$.

To ensure also $\Psi \circ \nu \equiv$ a $\tilde{\lambda}$, we assume compactness. We also note two improvements on Proposition 21(2) with similar conditions. Proposition 22. Suppose X, Y are separable metric spaces, $\lambda \in \mathcal{I}_{d}^{Y}, \Psi: X \rightarrow Y$ any map.

1. If Ψ onto and Y compact, there exists $\nu \in \mathcal{I}_{d}^{X}$ such that $\Psi \circ \nu \equiv a \lambda$,
2. If $\overline{\Psi^{-1} \mathrm{im} \lambda}=X$ and each $\Psi^{-1}\{y\}$ is compact ($y \in$ $\operatorname{im} \lambda)$, there exists $\nu \in \mathcal{I}_{d}^{X}$ such that $\Psi \circ \nu=\tilde{\lambda}$.
3. If $\overline{\Psi^{-1} \mathrm{im} \lambda}=X$ and X compact, there exists compact $\nu \in \mathcal{I}_{d}^{X}$ such that $\Psi \circ \nu \leq \lambda$.

Proof. (1): In view of the above, it remains to construct $\left(U_{k}\right)_{k}$ appropriately. As Y compact, let ν_{0} be such that $\left.\nu_{0}\right|_{2 \mathbb{N}+1}$ is dense and $2\left(\sum_{j<l} n_{j}+i\right) \in \nu_{0}^{-1} \Psi^{-1}\left\{y_{i}^{l}\right\} \quad\left(l \in \mathbb{N}, i<n_{l}\right)$ where $\left\{y_{i}^{l} \mid i<n_{l}\right\}$ is a $2^{-l_{\text {-spanning }} \text { set for }}$ Y. Then let $U_{k}:=B\left(\left(\Psi \circ \nu_{0}\right)(k) ; 2^{-b_{k}}\right)$ where $b_{k}=$ l if $2 \sum_{j<l} n_{j} \leq k<2 \sum_{j \leq l} n_{j}$. This ensures $\lim _{k \rightarrow \infty} b_{k}=\infty$ and so $\Psi \circ \nu \equiv$ a $\tilde{\lambda}$.
(2): For each $a \in \operatorname{dom} \lambda, k \in \mathbb{N}$ there is a finite 2^{-k}-spanning subset of $\Psi^{-1}\{\lambda(a)\}$, say $\left(z_{i}(a, k)\right)_{i<m(a, k)}$. Let $\nu\left\langle a, \sum_{j<k} m(a, j)+i\right\rangle:=z_{i}(a, k)$ for each $i<m(a, k)$ (also $\nu\langle a, m\rangle \uparrow$ if $a \notin \operatorname{dom} \lambda$). Plainly $(\Psi \circ \nu)\langle a, m\rangle=\lambda(a)=\tilde{\lambda}\langle a, m\rangle$ whenever $a \in$ dom $\lambda \wedge m \in \mathbb{N}$, and both sides undefined for
$a \notin \operatorname{dom} \lambda$. Given $x \in X, k \in \mathbb{N}$ there exist $a \in \operatorname{dom} \lambda, y \in \Psi^{-1}\{\lambda(a)\} \cap B\left(x ; 2^{-k-1}\right)$ and $i<$ $m(a, k+1)$ s.t. $z_{i}(a, k+1) \in B\left(y ; 2^{-k-1}\right) \cap \operatorname{im} \nu$. Then $d_{\mathrm{im} \nu}(x)<2^{-k-1}+2^{-k-1}$, and k was arbitrary.

We describe a general extension of (3) (of type (b) + (c)):

Proposition 23. Let X, Y be separable metric spaces, X compact, $\lambda \in \mathcal{I}_{d}^{Y}, g: \subseteq X \rightarrow Y$ any map with $\overline{g^{-1} \mathrm{im} \lambda}=X, \mathcal{F}$ a denumerable family of (total) maps $X \rightarrow X$. Also take $\left(\theta_{k}\right)_{k \in \mathbb{N}} \subseteq(0, \infty)$ with $\inf _{k} \theta_{k}=0, E_{l} \subseteq g^{-1} \operatorname{im} \lambda$ a finite θ_{l}-spanning set $(l \in \mathbb{N})$. Suppose $\sim_{l}(l \in \mathbb{N})$ are equivalence relations on \mathcal{F} s.t. \mathcal{F} / \sim_{l} finite,
$\left(\forall y \in E_{l}\right)(\forall C \in \mathcal{F} / \sim)(\forall i \leq l)\left(\exists z \in E_{i}\right)\{f y \mid f \in C\} \subseteq B\left(z ; \theta_{i}\right)$,
and which are increasingly fine \& satisfy separating condition $\left(\forall f, f^{\prime} \in \mathcal{F}\right)(\exists l)\left(f \neq f^{\prime} \Longrightarrow f \not \chi_{l} f^{\prime}\right)$. Then there exists compact $\nu \in \mathcal{I}_{d}^{X}$ with gov$\leq \lambda$ and $(\forall f \in \mathcal{F})(f \circ \nu \leq a \nu)$.

Proof. Write $E_{k}=\left\{y_{1}^{k}, \ldots, y_{r_{k}}^{k}\right\} \subseteq g^{-1}$ im λ (a θ_{k}-spanning set for $X, k \in \mathbb{N}$). Based on \sim_{l} ($l \in \mathbb{N}$) and an injective total numbering $e \mapsto f_{e}$ of \mathcal{F}, we define ν with $\operatorname{im} \nu=\cup_{k} E_{k}$; surjectivity will follow from (2), density from $\inf _{k} \theta_{k}=$ o. Separating condition ensures the partitions $\mathcal{P}_{l}:=\mathcal{F} / \sim_{l}(l \in \mathbb{N})$ (with $\left.(\forall l) \mathcal{P}_{l+1} \geq \mathcal{P}_{l}\right)$ are generating: $\left|\cap_{l} A_{l}\right| \leq 1$ for any $A_{l} \in \mathcal{P}_{l}(l \in \mathbb{N})$. If each \mathcal{P}_{l} is endowed with a numbering $\nu_{l}: \subseteq \mathbb{N} \rightarrow \mathcal{P}_{l}$, this leads to a representation $\rho: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{F}$: $\operatorname{dom} \rho=\left\{p \in \mathbb{N}^{\mathbb{N}} \mid(\forall l)\left(p_{l} \in \operatorname{dom} \nu_{l}\right) \wedge \cap_{l} \nu_{l}\left(p_{l}\right) \neq \emptyset\right\}$, $\rho(p) \in \cap_{l} \nu_{l}\left(p_{l}\right)$.

Will return to numbering $e \mapsto f_{e}$ and representation ρ of \mathcal{F}. Requirement for $f \in \mathcal{F}$ to be (ν, ν)-approximable equivalent to $f \circ \nu$ compact - (roughly speaking) suggests to store approximations to each f in each ν-name a. Form of ν will be

$$
a=\left\langle l ; j_{0}, \ldots, j_{l} ; j_{0}^{(0)}, \ldots, j_{l}^{(0)} ; \ldots ; j_{0}^{(m)}, \ldots, j_{l}^{(m)} ; \hat{b}\right\rangle \in \operatorname{dom} \nu,
$$

$\nu(a)=y_{j ;}^{l} ;$
$(\forall i<l) d\left(y_{j_{j}}^{i}, y_{j_{i}}^{l}\right)<\theta_{i}, \hat{b}=b\left(l, j_{l}\right)$ for a fixed choice function $b: \subseteq \mathbb{N}^{2} \rightarrow \mathbb{N}$ with $\operatorname{im} b \subseteq \operatorname{dom} \lambda, \operatorname{dom} b=$
$\left\{(k, j) \mid 1 \leq j \leq r_{k}\right\}$ and $g\left(y_{j}^{k}\right)=(\lambda \circ b)(k, j)$ for all $(k, j) \in \operatorname{dom} b$, plus further conditions on m and $j_{i}^{(q)}(q \leq m, i \leq l)$. Namely, assuming dom ν_{l} finite, want $m \geq \max \left(\operatorname{dom} \nu_{l}\right)$ and $d\left(f y_{j_{l}}^{l}, y_{j_{i}^{\left(p_{l}\right)}}^{i}\right)<\theta_{i}$ whenever $i \leq l \in \mathbb{N}, f \in \mathcal{F}, p \in \rho^{-1}\{f\}$.
One checks existence of suitable $j_{i}^{(q)}\left(q \in \operatorname{dom} \nu_{l}\right.$, $i \leq l$) for given $y=y_{j_{l}}^{l} \in E_{l}$ follows from (2).

For simplicity let $\operatorname{dom}_{\nu_{l}}=\left[0, m_{l}\right]$ and $m_{l}:=\left|\mathcal{P}_{l}\right|-1$ $(l \in \mathbb{N})$, with $m=m_{l}$ determined by l. To complete the construction, there is some freedom in choice of ν_{l}. We will ensure each $f \in \mathcal{F}$ has a computable ρ-name; the $(l+1)$-block $j_{0}^{(q)}, \ldots, j_{l}^{(q)}$ relevant to f can be picked out of ν-name a based on this. More rigourously, fix choice function $c^{\prime \prime}: \subseteq \mathcal{F} \times \mathbb{N}^{3} \rightarrow \mathbb{N}$ s.t.

$$
\begin{gathered}
d\left(f y_{j}^{l}, y_{c^{\prime \prime}(f, l, k, j)}^{k}\right)<\theta_{k} \quad \text { for all }(f, l, k, j) \in \operatorname{dom} c^{\prime \prime}:= \\
\left\{(f, l, k, j) \mid f \in \mathcal{F} \wedge l<k \wedge 1 \leq j \leq r_{l}\right\} .
\end{gathered}
$$

For any fixed k and $f \in \mathcal{F}$, from $p \in \rho^{-1}\{f\}$ and $a \in \operatorname{dom} \nu$ we will be able to compute

$$
u:= \begin{cases}j_{k}^{\left(p_{l}\right)}, & \text { if } k \leq l \\ c^{\prime \prime}\left(f, l, k, j_{l}\right), & \text { if } l<k\end{cases}
$$

and observe $d\left(f y_{j_{l}}^{l}, y_{u}^{k}\right)<\theta_{k}$; this computation is possible since $(\{f\} \times \mathbb{N} \times\{k\} \times \mathbb{N}) \cap$ dom $c^{\prime \prime}$ is finite.

To define $\nu_{l}(l \in \mathbb{N})$, proceed in stages; at the end of stage i we will have each ν_{l} defined on an interval $\left[0, m_{l, i}\right]$ with

$$
\begin{equation*}
\nu_{l}\left[0, m_{l, i}\right]=\left\{\left[f_{j}\right]_{\sim_{l}} \mid j \leq i\right\} \quad \text { for all } l \in \mathbb{N} . \tag{3}
\end{equation*}
$$

In stage 0 we define $m_{l, 0}:=0$ and declare $0 \in \nu_{l}^{-1}\left\{\left[f_{0}\right]_{\sim_{l}}\right\}$ for all l; also let $l_{0}:=0$ and $p^{(0)}:=0^{\omega}\left(\in \rho^{-1}\left\{f_{0}\right\}\right)$.

At stage $i+1$ let $l_{i+1}:=\inf \left\{l \in \mathbb{N} \mid(\forall j \leq i)\left(f_{i+1} \not \chi_{l} f_{j}\right)\right\}$ $(i \in \mathbb{N})$. For each $l<l_{i+1}$ we have $f_{i+1} \in \cup_{j \leq i}\left[f_{j}\right]_{\sim_{l}}$, so $\left(\exists p_{l}^{(i+1)} \leq m_{l, i}\right)\left(\nu_{l}\left(p_{l}^{(i+1)}\right)=\left[f_{i+1}\right]_{\sim_{l}}\right)$, and we leave ν_{l} unmodified, $m_{l, i+1}:=m_{l, i}$. For $l \geq l_{i+1}$ we have $\left[f_{i+1}\right]_{\sim_{l}} \notin$ $\left\{\left[f_{j}\right]_{\sim_{l}} \mid j \leq i\right\}=\nu_{l}\left[0, m_{l, i}\right]$, so let $p_{l}^{(i+1)}:=m_{l, i+1}:=$ $m_{l, i}+1$ and $\nu_{l}\left(m_{l, i+1}\right):=\left[f_{i+1}\right]_{\sim_{l}}$.

In either case (3) $\left.\right|_{i+1}$ holds (by inspection), computability of $\left(m_{l, i+1}\right)_{l} \in \mathbb{N}^{\mathbb{N}}$ holds by induction, and the computability of $p^{(i+1)} \in \rho^{-1}\left\{f_{i+1}\right\}$ will follow once we show $l_{i+1}<\infty$. Suppose
that $l_{i+1}=\infty$; then $(\forall l)(\exists j \leq i)\left(f_{i+1} \sim_{l} f_{j}\right)$. By the pigeonhole principle and the fact $\left(\mathcal{P}_{l}\right)_{l}$ are increasingly fine, we get $(\exists j \leq i)(\forall l)\left(f_{i+1} \sim_{l} f_{j}\right)$, so $f_{i+1}=f_{j}$ since $\left(\mathcal{P}_{l}\right)_{l}$ is generating. This contradicts injectivity of $e \mapsto f_{e}$.

Finally, since $\left\{f_{e} \mid e \in \mathbb{N}\right\}=\mathcal{F},\left.(\forall i)(3)\right|_{i}$ implies $\nu_{l}\left(\cup_{i}\left[0, m_{l, i}\right]\right)=\mathcal{P}_{l}$ for each l. It is clear by construction ν_{l} injective, so $\sup _{i} m_{l, i}$ finite, and $\sup _{i} m_{l, i}=m_{l}=\left|\mathcal{P}_{l}\right|-1$ as previously assumed.

Clear how to check compactness of ν w.r.t. $\left(B\left(y_{j}^{k} ; \theta_{k}\right)\right)_{j=1}^{r_{k}}$: use choice function $c^{+}: \subseteq \mathbb{N}^{3} \rightarrow \mathbb{N}$ with $d\left(y_{j}^{l}, y_{c^{+}(l, k, j)}^{k}\right)<\theta_{k}$ for all $(l, k, j) \in \operatorname{dom} c^{+}:=\left\{(l, k, j) \mid l<k, 1 \leq j \leq r_{l}\right\}$, and from $a \in \operatorname{dom} \nu$ compute

$$
u:=\left(j_{k}, \text { if } l \geq k ; c^{+}\left(l, k, j_{l}\right), \text { if } l<k\right) \text {; }
$$

this uses finiteness of $\mathbb{N} \times\{k\} \times \mathbb{N}) \cap \operatorname{dom} c^{+}$.
If id ${ }_{X} \in \mathcal{F}$, this argument (and data j_{0}, \ldots, j_{l-1} in names $a \in \operatorname{dom} \nu$) can be omitted. Despite these good properties, several reasons to simplify or generalise above proof.

Examples for \sim_{l}

Consider equivalence relations $\sim_{l}(l \in \mathbb{N})$ defined from choice function \tilde{c} as follows: fix $\tilde{c}: \subseteq \mathcal{F} \times \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that

$$
\begin{gathered}
d\left(f y_{j}^{l}, y_{\tilde{c}(f, l, i, j)}^{i}\right)<\theta_{i} \quad \text { for all }(f, l, i, j) \in \operatorname{dom} \tilde{c}:= \\
\left\{(f, l, i, j) \mid i \leq l, 1 \leq j \leq r_{l}\right\},
\end{gathered}
$$

define $f \sim_{l} f^{\prime}$ if $\tilde{c}(f, \cdot), \tilde{c}\left(f^{\prime}, \cdot\right)$ agree on $\left([0, l] \times \mathbb{N}^{2}\right) \cap$ $\operatorname{dom} \tilde{c}(f, \cdot)$. Such \sim_{l} are increasingly fine, have \mathcal{F} / \sim_{l} finite and (2) holds (definition of ν can further be 'simplified' by requiring strictly $j_{i}^{(q)}=$ $\tilde{c}\left(f, l, i, j_{l}\right)$ for all $i \leq l$ whenever $\left.f \in \nu_{l}(q), q \leq m_{l}\right)$.

If $f, f^{\prime} \in \mathcal{F}$ distinct over $\cup_{k} E_{k}$, pick $k, x \in E_{k}$ s.t. $f(x) \neq f^{\prime}(x)$, and w.l.o.g. assume $(\forall l)\left(E_{l} \subseteq\right.$ $\left.E_{l+1}\right)$. For $l \geq k$ s.t. $2 \theta_{l}<d\left(f x, f^{\prime} x\right)$ and $j \in$ $\left[r_{l}\right]$ s.t. $y_{j}^{l}=x$ we must have $\tilde{c}(f, l, l, j) \neq \tilde{c}\left(f^{\prime}, l, l, j\right)$, hence $f \not \chi_{l} f^{\prime}$. So the separating condition may be replaced by

$$
\left(\forall f, f^{\prime} \in \mathcal{F}\right)\left(f \neq\left. f^{\prime} \Longrightarrow f\right|_{\cup_{k} E_{k}} \neq\left. f^{\prime}\right|_{\cup_{k} E_{k}}\right),
$$

and $\cup_{k} E_{k}$ chosen as any dense countable subset of $g^{-1} \mathrm{im} \lambda$ (while assuming $(\forall l)\left(E_{l} \subseteq E_{l+1}\right)$).

References

V. Brattka. Computability over topological structures. In Computability and models, Univ. Ser. Math., pages 93-136. Kluwer/Plenum, New York, 2003.

Ju. L. Eršov. Theorie der Numerierungen. I. Z. Math. Logik Grundlagen Math., 19:289388, 1973.
P. Hertling. A real number structure that is effectively categorical. MLQ Math. Log. Q., 45(2):147-182, 1999.
R. Kenny. Orbit complexity and computable Markov partitions. PhD thesis, University of Western Australia, Jan 2008.
K. Weihrauch. Computability. Springer-Verlag, Berlin, 1987.
K. Weihrauch. Computable analysis. SpringerVerlag, Berlin, 2000.

