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Notation

X separable metric space
Rx = {plp:C NN 5 X onto}
g :=4{v|v:CN — X dense}

Fix open cover (U;)Y, [r] :={1,...,r}
R:X=][rl,x— {i U; >z}

S . [T]:ZX,iI—>UZ'

Te: X =2 X,z — {y|d(z,y) < e} (e >0)

0 <ap:<= (Ve>0)(Tc is (4, p)-computable )
0<p <= (idy:X — X is (4, p)-computable )

0 € Rxy compact if for each finite open cover
(U;))Y, R: X = [r] is (6, 5N|[7’])—computable



Example: If X compact and v € Z4, the stan-
dard representation (equivalent to Cauchy rep-

resentation in case of a computable metric space)
defined by

ped Hal <= {pi—1/ieNAp >1} = {k|a(k) >z},

o N = Tx, (i, ) = Ba(v(i); v+ (7))

Lemma 1. Suppose X compact, 6,p € Rx, 9
compact. If p-computable points are dense in
X then § <5 p.

Proof. Given e > 0, pick open cover (U;)] with
max; diamU; < e. Then (9, dy |[T])—computability
of R and (5N][7“],p)—computability of S implies
(8, p)-computability of Te. L]

Some generalisation is possible. Consider e.g.
Lemma 2. If (X,d) a totally bounded metric
space and v € T4 then for any r € QT there ex-
ists finite A C domv with X = Uy Bg(v(a);r).



For vg,v1,v, A € Ly, write

v<aX:<= (Ye>0)(3h e PM)(Ve) (c cdomv = ce€ (Aoh) B(v(c); e)).
dom(vg @ rv1) = U(2 domv; +1), vo®dri(2a+1i):=v;(a)

v € Iy compact if any finite open cover (U;)}
admits some f e P(1) with
domv C f~[r] A (Va € domv) (I/(a) < Uf(a)) (1)

Proposition 3. Let X be a separable metric
space, py the Cauchy representation forv € Zg4.
For any v,A € Iy and d,p € Ry,

1. v<g X\ <= p, <350\
2. 0<p = d<ap
3. dUp is a least upper bound of {4, p} w.r.t. <g

4. v@ X is a least upper bound of {v,A\} w.r.t. <3

Proof of (3): First apply (2) in §; < dp UL dq
(1 < 2). If also §; <a p, say via F; at precision
e (1 < 2), then dg L1 <3 p at precision € via
F:CNN 5 NN p— E(p). L]



Each <; also reflexive and transitive. Thus above op-
erations give rise to upper semilattice structures, on
Rx/=a, Ia ;= Iq/=a and (ZgN XV)/=,. If X compact,
analogue of Lemma 1 for dense partial sequences im-
plies compact v € 7y form a least element of I; (later
we show there exists compact v € Zy).

Proposition 4. 1. p< L3 p>

2. p<apcr

3. p< <ap< and symmetrically (replace <,< by >,>).

Hence p <a pcr, p<,p> and pp,, <a pcrp>,p< and (3) are
the only <g-reductions not shown in the left figure.

Proof. (1): Let F realise p< <5 p> to precision ¢; where
p € p=*{xz} enumerates all rationals < z, ¢ = F(p) enu-
merates strict right Dedekind cut of some y s.t. |[z—y| <
€. go IS output after finitely many steps, with only finite
prefix pV of p read from input. Let p’ € p_1{z} for some
z > vo(q) + ¢ (> y+e>x) with (p/)V = pV. Then
F(p)o = qo, SO (p<o F)(®) < volqo) < z — ¢, contradiction.

(3): Recall the Top-topology 7« = {(x,00) | x € R} U
{0,R} on R (with respect to which p. is admissible)
and the following

Lemma 5. For any D C R, a function f :.C R — R with
dom f = D is (7, 7<)-continuous iff it is left-continuous
and nondecreasing.



We specify f which is (p<, p<)-computable and lies in the
open e-envelope of idr. First, consider f: R — R as in
Lemma 5 which is also piecewise constant: take f(t) =
c; for t; <t < t;41 where strictly increasing (¢;)icz, (ti)icz
have inft; = —oo, supt; = oo, ci—e < tiAtir1 < ci4e (i € Z). If (¢;)q
are uniformly right-computable and (¢;); uniformly left-
computable then f is (p<, p<)-computable. If (¢;);ez C
R \Q then any (p<, p<)-realiser of f also (p<, p<)-realises

it. For instance, if e = 277%t: we can take t, := ne,
. e _ 2n+1

Note now that (1) (with transitivity of <;) implies dp %3
01 for all (6o,01) € {p<, p<,pcn} x {pct, Pon, P2, 0 p>}. With sym-
metric version (exchanging <, < with >, >), shows pcn 43
6 for all § € S\ {pcn}, where S := {pcr, p<,p>, pons P P<, P>, pcn }
(for convenience we fix n), while § < pcn for all § € S.
For 6o € {p<,p>} again (1) and figure completely deter-
mine either g L4 61 or 9o < 61 as 61 € S varies. Case
do € {p<,p>} is similar except where (3) and its sym-
metric version apply. So assume &g € {pcf, pon, P}, and
01 € S\ {p<,p>,pcn} (otherwise §o < §1). By (2) we
already have dp <3 01, which completes the proof.




PCn

/\> /\

\ / P< =a P< P> =a P>

yb/ P =a Pb,n =a PCf
PCf

From the figure (p =a pp., =a pcr) and known facts it fol-
lows <5 does not imply continuous reducibility <¢ (nor
does =5 guarantee the same final topology). The con-
verse inclusion (<{) C (<) also fails in general, using
next construction from [?] (with Proposition 3(1)).

Definition 6. Let (Y,v) be a numbered set with |Y| > 2
and fix x,y € Y with x # y. For each A C N write

v(k), ifi=0Akedomv,
vA(2k41i) = v2 (2k+1) == =, ifi=1AkcA,

Y, ifi=1AkeN\A
(1 < 2).

Iterating, we can compare towers constructed this way.
First consider a generalisation of compact v € Z4.



Definition 7. Let X be a separable metric space.
v € T4 separating at finite precision if for any

distinct x,y € X there exist open cover (U;)%,
V.W € Ty, h e P(1) with

zeEVAYye WANcerv T (VUW))(eceh Hrl Av(c) € Uye)A

(GlUNV#E0#EUNWY=0.
Theorem 8. Let X be a separable metric space,

l/o,...,l/n,)\,)\’ c Ly, A;,BCN (Z <nc N), E, = {ZE@',y@'
i<n} CX and z,y € X distinct. Suppose vy separat-

ing a.f.p., viy 1 = (z/i);;‘;yi for all i <n and N = A5, . If
E,.Nn{x,y} =0 and B is nonrecursive then N L3 v,.

Proof. Fix (U;)%,V,W, h as in definition of sep-
aration a.f.p., and pick ¢ > 0 suff. small that
B(xz;e) C VAB(y;e) CW ANA(E,) N{z,y} = 0. Also
SUPPOSE N|aw41 <a va @t precision e via f € P(1).
Write k € N, a = f(2E+ 1) = Y ' 5a;2" where
an € N, (a;)icn € {0,1}. The last requirement
on € means N(2k+1) € {z,y} = wvn(a) €imuy\ E,
and a; = 0 for ¢« < n (inductively for m =n,...,1,
use

iMuo\En 3 vm (D 6;27) = v 1 () " 5,27) = vm-1()  bj4129)
j=1



where (b;)§" = (a:)g, (ai+1)8_1, ooy (aipn-1)3). S0, we
get vn(a) = vn(an2™) = -+ = v1(an2!) = vo(an)
while g : k — ap = [z—nf(zk + 1)J is com-
putable with img C dom v.

NRE+1) =2z = g(k) € h'1Bo) A NQRk+1) =
y = g(k) € h"1B;) for all k € N where By := {i
B(z;e) NU; # 0} and By := {i | B(y;e) NU; = 0}. In
particular, B <m Bg Vvia h o g, which implies B
recursive, a contradiction. So, X €3 vn. [ ]
Lemma 9. 1. A<y B = 4 <5,

2. If v ZFyN{z,yi|i < n}n{z,y =0A0 F#* A #
NAVi <n)(vig1 = (w)2,) and A8, <a (wn)Z, where
vg separating a.f.p. then B <m A.

Proof. (1): Fix f € R(1) such that A= 1B
2k, if i =0,
2f(k)+1, ifi=1
Then one checks v4 < vB via g.

(2): Fix (U;)%,V,W, h as in definition of separa-
tion a.f.p. (for x #= y), € > 0 such that B(z;¢) C

andletg: N — N, 2k+417 —



V AB(y;€) C W ANA(E,)) N{z,y} = 0 where E, =
{x;,y; i <n}. LetgE€ P witness AB <, (v,)4 at
precision € and denote [N —» N,k |2g(2k + 1) ],
C; : ={keN|g(2k+1) =i (mod?2)} (i=0,1). Also
let By := {i| B(z;e)NU; # 0}, By := {i| B(y; €)NU; # 0},
and choose ce A, de N\ A, m: k— {2_”l(k)J
c, if k€ Co Am(k) € h~ 1By,
and f: N - N,k — {d, if k€ Conm(k) € h"1By,;
I(k), ifkeCh
plainly Cp,Cq1 are disjoint recursive sets (with
union N), so f € P(1). wWe show f € R(1) with
(Vk)(ke B < f(k) e A).

Firstly, if k£ € Cpy then

e > dOP 2k + 1), (v, 0 1) (k))
= (vpol)(k) €imyg\ En
= (k) = an2"
where an, = m(k). So (vpol)(k) = vp(an.2™) =
- = vg(an.2°) = (vg o m)(k) (this also shows
Co C m—1tdomuvg). Now definition of By, By



implies (\V(2k+1) =z = m(k) € A" 'Bo) A\(AB(2k+
1) =y = m(k) € h1By), sOo k € Cp implies
ke B «<— f(k) € A. For k € (1, instead
A2k +1) = ((v)a, 09)(Rk+ 1) with £k € B <=
I(k) € A (this uses d(x,y) > €). So f has the
properties required. [ ]

In particular, for any v,,x,y as above, the map
a A~ ()i, iInduces an embedding of <m-
degrees in <3-degrees with least element [v,]=,.

Randomness and density
Definition 10. Consider a bounded effective
metric space (X, d,vg). A denseness test (A,a, )
has A C N infinite c.e., a € domvuvg, j €N, € €
XN fails (A, a,j7) if ¢ € Meax™ \ o~ (ala,j) x XV),
passes (A,a,j) if € € Uecao™ (afa,j) x XV); these
define resp. closed, open sets in XN .

zrand = {¢ € X! | ¢ passes all denseness tests}.



We introduce another generalisation of the def-
inition of compact sequences.

Definition 11. Suppose X a separable metric
space, (U;)] a finite open cover, ¢ > 0 with
each N((U;) nondense and v € Zy4, f € p1)
s.t. (1) holds. Then v is properly covering.

If v € Z4 is properly covering then |X| > 2; any
separating a.f.p. dense sequence in a compact
space X with |X| > 2 is properly covering.

Proof. For each z € X we have (U;(2))7", Tx >
Vz 2z and h, € PW s.t. (Vee v 1V,)(v(e) € Uy (o (2)).
By compactness there exist s and (x;);«s € X
with X = u;,V,,. We can take a formal disjoint
union of (U](CUZ))]E[T%] (1 < s), say (UZ)ZE[T]
where r 1= >, .rz;, and by adding appropriate
constants to each hy, (i < s) we get h € p(1)
with (Ve € domw)(v(c) € Upcy)- ]

Proper covering does not imply separation at
finite precision.



Proposition 12. 1. Suppose vg,...,v, € Iy, (Vi <
n)(Wiy1 = (’/i)ff,yi)' vo total & properly covering, and

A €I Then X £La vn.

2. Suppose |X| > 2. For any v € I{f’”d there exists
A€ XN\ Zrnd with v < A,

3. Iga”d is closed under @.

Proof. (1): Suppose X <a vp via f € P(1) at
precision €, where e suff. small that Ne({z;,y;})
and Ne(U;) nondense for each ¢ < n and each
j € [r], for some open cover (U;)]. We have
domvy, = N = U;j, 4;U2"N where each A;
is infinite c.e. with Vn(Az) = {ZL‘Z,yZ} C im Vit+1
(i < n). Since X total, f € R(1) with some
A;nim f (i <n) or 2"N Nnim f infinite (by pi-
geonhole principle). Each of these sets is c.e.
If A;,nim f infinite, its vp-image (C {z;,y;}) lies
within e of A(f~1A4;) which is dense, contra-
dicting choice of €. If 2”"N Nim f infinite, let A
be as in definition of vg for cover (U;)]. Then



each h~1{i} is c.e., so f~L(2"(h=1{i})) is c.e.,
and at least one such set is infinite, so has A-
image dense & C N((U;) (contradicting choice
of (Ui)r, h).

(2): For any v € Z2"d ¥ X\ we have v B X ¢
I{ja”d. Such M\ can always be found e.g. as a
nondense total sequence (extend @ definition).
(3): Let X\p,A\; € Z[2"9. For any denseness
test (A,a,7) we have some 7 < 2 such that
AN (2N + i) is infinite. Clearly \; < A\g & \q
via (injective total recursive) h : k — 2k + 1,
and B :=h~ (AN (2N 44)) is infinite c.e. We
know )\; passes the denseness test (B, a,j), say
k€ BN tala, i), so (Ao @ A1) (R(k) = \(k)
shows \g @ A1 passes (A, a,j). L]



Remains to establish Ig,a“d = (). For topologi-

cal space Y, a continuous surjectionT :Y — Y
IS one-sided topologically mixing if

VU,V € Tv\{0})(BN e N)(¥n) (n > N = T"(U)NV £ 0).

One checks

Lemma 13. For any separable metrizable X
and Y = XN left shift 0 : Y — Y is one-sided
topologically mixing ( w.r.t. product topology).

More generally, consider a complete effective
metric space (Y,d,v) with ideal ball number-
iINng o and continuous one-sided top. mixing
T Y — Y. By definition, each U,,cAT™ "V
dense (V € Ty \ {0}, A infinite), so in particular
R4 := Naedom o Umea T ™a(a) and R := N{Ry
A infinite c.e.} dense G5 in Y (by Baire cate-
gory theorem). We now apply to Y = XV, Re-
call a formal inclusion C of total basis number-
ings «, B of space X has the weak basis prop-
erty if (vb)(Vz € X)(Ja)(xz € B(b) = =z € a(a)Aa Cb).



Proposition 14. Let (X,d,vg) be a complete
bounded effective metric space with vg total,

and equip XN with the (bounded) product met-
ric d(¢,n) 1= Yien 274 1d(&;,m;) and dense se-
quence v : N — XN defined by v((w))(i) =
vo(w;),
vo(d),  ifi>|w|’
defined by
axy I N = Txn, (a,r) — Bz(y(a); vo+(r)),

B:N — Txu,{a,r,N) — H By(y(a)i; vg+(r)) x XN
<N

Then basis nhumberings

are effectively equivalent, and any & € XN has
((Ulf)leN rand| — £€R|X O — é-EII’aan )

in particular I'2"9| %X is residual in XN .

Proof. It is convenient to use the following
binary relations on N:

(a,m) C (b,q,N) : <= max d(y(a)i, v(b):) + 2 v+ () < vo+(q),

(a,r, NY T/ (b, q) 1 = ) 27w (r) + d(v(a)i, v()))
<IN
—|—Co.2_N < V@+(q);



here Q1T 5 Cy > diam(X,d) is a fixed bound.
We first check —, ! are c.e. formal inclusions
(of ayn in B, resp. of B in aXN), each with the
weak basis property.

Next denote B, := {(b,q) | (b,q) T {{a),r, 1)} (a,r €

N). Clearly By, ,y is nonempty and c.e. uni-

formly in a,r € N, and for any A C N the con-

dition (Va,r) (E € Ueao (ala,r) x XN)) IS equivalent

to (Va,r)(3(b,q) € Biur) (€ € Ucaclaxn(b,q)). In par-
ticular, this is implied by (vb,q) (¢ € Ujcacaxi (b, q)),

or equivalently (vb,q)(3k € A) ((c"*E)ien € axn (b, q) x (XM)N).
Quantifying over infinite c.e. A, thus (¢ € R|¥ 7 «—

) (0'€)ien € ZX" implies ¢ € TANA|X. ]

Example: X = {0, 1} corresponds (easily checked)
to ZA"4X = {xp| B C N bi-immune}, i.e. those
sets B for which neither B nor N \ B contains

an infinite c.e. set.



Comparison with other tests

For any ACN, N € N{(X) denote
: X, if1€ A
FAN:eriwhereWi: , _ ’L€ .
’ N N, ifi1€A

FA,X\a(a,j) — {5

¢ fails (A, a,j)} for denseness test (A, a,j),

XMN\Z2"Y = U{Fy x| A infinite c.e., N = X\«(a,j),a,j € N}.

7?7?For X effectively compact,

f{o,1}"

computable.

X ’C>(X) — ]C>(XN)7 (XAaK) — FA,K

More generally, suppose | X| > 2.

If up iIs @ measure positive on nonempty open

sets, for any

test (4,q,5) we have ug(X\Bg) < 1

for By 1= afa,j), SO Fy x\p, iIs a closed A-
nullset. Here X is the product measure on XN
corresponding to measure ug on X; also one
can show A\ a computable probability measure
if uis and X bounded complete.



Effectiveness and approximability

When choosing naming system ~ for a given
space Y, several types of requirements [?, §2.7]:

(a) require f; :C X; — Y computable (i € I)
(b) require f; :CY — Z; computable (i € I)
(c) require operations f; :C Y™ — Y computable (i € I)

For example, types (a)4(c) and (b) resp. addressed by
Proposition 15. Fix represented sets (X;, p;), maps f; :.C
Xi—Y,9:CY—Y (ieN) & suppose

§ :C NN — Y defined by dom § = Uicy wen- i-(w).(p; 1 £ dom gi,)
and §(i(w).p) == (Gwo fiop)(p) has § € Ry. fi is (pi,0)-
computable and g; is (6,6)-computable (i € N).

Proposition 16. Fix represented sets (Y;,6;), fi :C X —
Y; (i € N) where |X| < 2%. Then there exists p € Rx
such that each f; is strongly (p,é;)-computable (i € N ).

More sophisticated results for type (c), see [?, Thm
2.7.15], [?], [?].



For requirements of type (a)+4(b) or (b)+4(c),
in general there exist counterexamples:
Proposition 17. 1. there exist sets X,Y,Z, maps f .C
X =Y, g CY — Z and total numberings v, u of
X, Z respectively, such that
(AN CN - Y)(for<AAgoA<pu).

2. there exist setsY,Z, maps f CY —-Y, g . CY —Z
and total numbering u of Z such that
(X ETNXY))(fod<AAgoA<pu).

3. there exist separable metric spaces Y, Z, maps f .C
Y =Y, g:CY — Z and p € 5N Z" such that

—|(E|)\€I§)(fo)\§)\/\go)\§,u).

Proof. (1): X =Y = Z denumerable, f = g = idx, v
total injective numbering of X, u a total numbering s.t. v £
1 (e.g. an incomparable total injective numbering, of
which there are 2%; see [?]).

(2): Y = Z denumerable, p a total injective numbering,
h: N — N a nonrecursive bijection with N, : N — N,k —
# Fix(h*) not lower semicomputable, f = poho pu 1,
g=1idy. If A€ TN(Y) and n € PN (X, p)-realises g, =y
is [\, A]-decidable via (a,b) — 6, np) (Since g,p injec-
tive). So Nyy N — N,k — #Fix(f*yoan) (M > 1)
are uniformly effective provided also f is (A, A)-effective:
consider

an = pa < M ((f*o A)(@) = A(a) & {A(a)

z<n})



with convention pa < M (False) = M, inductively for
n <M and N = pun(a, =M) (< M). Then >\|{ai‘i<N} is
injective with image Fix(f*| j0.1r)), S0 Nyam(k) = N.
Further, (f*oX)(a) = A(a) iff (hFopu=toN)(a) = (p 1o
A)(a), so Fix(h*|(1on0.r)) = 1=t Fix(f*|xp.ar)). In unions
over increasing M, Fix(h*) = p~ ! Fix(f*) and Ny(k) =
supy N¢ (k). This contradicts choice of h.

3): Y=Z=R, f=idg+a (¢ € R\Q), g = idg,
1 = vg. The only solution for A :C N — Y is then the
empty partial sequence. []

Next, consider (a),(b),(c) when maps are ap-
proximable rather than computable. Here f .C
X — Y approximable w.rt. v e Iy, X e 7} if
forv <3 A (extending definition of <j3).

If X uniformly discrete, (1), (2) transfer since
v < Niff v <g A for any v, A e ZF = TN(X). If X
compact, instead take vy € Zf compact and
pick v, u <g-incomparable. Then

(AN CN =2 Y)(for<gAAgol<apu).



Lemma 18. If X compact, v ¢ 7, compact and
T : X =Y a continuous surjection then wov is
compact.

Proof. Uses Lebesgue numbers and uniform continuity
of m; see [?]. []
Corollary 19. LetY, Z be compact metric spaces,
f:Y—=Y,g:Y— Z (total) continuous surjective
and u € 4. For any compact X\ € T} we have
foA<gAAgoA< u.

Proof. Follows from Lemma 18 and analogue
of Lemma 1. ]

Given existence of compact M\ € I}j/, this is a
positive result for requirements of type (b)+4(c).



Requirements of type (a),(b)

For v € Zx we denote the cylindrification by v:
domv = (domv,N), v{i,j) ;= v(i).
Proposition 20. Fix separable metric spaces
X,Y;,, maps WV, : X — Y, and \; € sz (i < n).
There exists v € I s.t. (Vi <n)W;ov <z \;.

Proof. Fix vg € ZgNn XY and (fori < n, k€ N)

al(:) = ,un(n e dom M A =(3j < k)(n = a;)A
d((Wiovo)(k), Ni(n)) < 27%).
We denote v(a!?, ... a{" D) := vo(k), with v unde-
fined elsewhere. For any e€ > 0, maxXjc,d((V; o
(@, .. a" ) Xie!?)) < e fails only for finitely
many k (among those with ¢ < 27%). We also
have imv =imyy and X; = ), for each i < n. L]



Proposition 21. Let X,Y be separable metric
spaces, v : X - Y, velj, Xe€I} as appropriate.

T hen:

1. for any v there exists A with Wov < X\; if ¥ contin-
uous onto Y, there exists A\ with Wov = ),

2. if W open, for any A there exists v with Wov <},
3. for any v there exists A with W ov <3 },

4. for any X\ there exists v with W orv <g .

Proof. (2): Each wv—1{\(a)} separable (a € dom \)
so if nonempty fix a dense subsequence (f’?z(a))z‘eN
and let v{a,i) = azga’) (« € N) (v undefined
elsewhere). Since W open, W~—lim\ is dense,
hence so is imv. L]

For (4), if W onto we can construct v € Zf in
a different way. First, pick vg € Z5 N XN and
A E Ig. Let domv = {a; |k € N}, v(ar) = vo(k) fOr

ap = un(nedomXAﬂ(Elj<k)(n=aj)A5\(n)EUk) (k eN)



where (Ur)ren C Ty \{0} has the property (vz ¢
imA)(VN)(3k > N)(U, 2 z). In place of domv C
dom X we now have equality: for c; the Ith el-
ement of dom ) in ascending order, and N, :=
pk (U, 3 X)) A (VU < D (k > Np)), we Show ¢ € {a;|j <
N} (I € N). First, No = pk (Uy 3 Xco)), SO =(35 <
No)(co = a;) (as X(aj) S Uj) and then ay, = co.
Secondly, ay,, = min(A1Ux,.) \ {a; | 7 < Niz1} and
Un.,, > Mep1) SO if eip1 & {a;]j < Nig1} then an, ; <
cj4-1, iImplying 3k < Daw,, = ¢, € {a; | j < Ni}.
But then N, > N, > N, contradicts injectivity
of (a;)ieN-

To ensure also Wor =5 A\, we assume com-
pactness. We also note two improvements on
Proposition 21(2) with similar conditions.
Proposition 22. Suppose X,Y are separable
metric spaces, Xe 1}, V:X =Y any map.

1. If W onto and Y compact, there exists v € Igf such
that W ov =3 ),



2. If W~1im X = X and each W~1{y} is compact (y €
im ), there exists v € I such that Wov = X.

3. If v-1im\ = X and X compact, there exists com-
pact v € I such that Wov < A.

Proof. (1): In view of the above, it remains
to construct (Ug);, appropriately. As Y com-
pact, let vg be such that vploy41 IS dense
and 202, <ln‘7 +i) € vy'w Yy (I € Nyi < ny)
where {y! i < n;} is a 2~ l—spannlng set for
Y. Then let U, := B((Vow)(k);27*) where b, =
it 23 iqn; < k < 23 ;<nj. This ensures

~

liMg_yoo b = 00 and sO Wov =3 A.

(2): For each a € dom\, k£ € N there is a
finite 27%-spanning subset of W~1{\(a)}, say
(z;(a, k))z’<m(a,k)' Let v(a,} ;. m(a,j)+i) = 2i(a, k)
for each i < m(a, k) (also v{a,m)tT if a € dom \).
Plainly (Vv ov){a,m) = X(a) = Xa,m) whenever a €
domA Am € N, and both sides undefined for



a & domA. Given z € X, k € N there ex-
ist a € dom A\, y € v (a)} N B(z;27%1) and i <
m(a,k+ 1) S.t. zi(a,k+1) € B(y;27* ) nimv. Then
dim,(x) <275~ L 27k=1 and k was arbitrary.

L]

We describe a general extension of (3) (of type

(b)+(c)): .
Proposition 23. Let X,Y be separable metric
spaces, X compact, xe1}, g:C X =Y any map

with ¢ 'im\ = X, F a denumerable family of
(total) maps X — X. Also take (6.)ren C (0,00)
with inf. 6, = 0, E, C g~ timX a finite 0;-spanning
set (I e N). Suppose ~; (I € N ) are equivalence
relations on F s.t. F/~j finite,

(Vy € B)(VC € F/~) (Vi <1)(3z € E){fy|f € C} C B(z; 6),

(2)
and which are increasingly fine & satisfy sepa-
rating condition (Vf,f'e FYB)(f £ f = f & f).
Then there exists compact v € T with gov < X
and (Vf e F)(fov <gv).



Proof. Write E, = {y§,...,yr} C g timX (a
0,.-spanning set for X, k£ € N). Based on ~j
(Il € N) and an injective total numbering e — fe
of F, we define v with imv = U,E,; surjectiv-
ity will follow from (2), density from inf,#,
0. Separating condition ensures the partitions
P, = F/~; (I € N) (with (vi)P,41 > P,) are gen-
erating:. |mA; <1 for any A, € P, (1 e N). If each
P; is endowed with a numbering v, :C N — P,
this leads to a representation p :C NN — F:
domp = {p € NV | (vD)(p, € domu) A Ni(p) # 0},
p(p) € Nivi(pr).

Will return to numbering e — fe and repre-
sentation p of F. Requirement for f € F to

be (v,v)-approximable equivalent to for com-

pact — (roughly speaking) suggests to store
approximations to each f in each v-name a.
Form of v will be

a — <l;j0a"'7]l ](g )a“'ajl(O); v](()m)77.]l(m)rg> € dom v,
v(a) = y;

(Vi < Dd(y:, ) < 6, b= b(l,5) for a fixed choice
function b :C N2 - N with imb C dom ), domb =



{(k,7) |1 <j < m} and g(yh) = (Ao b)(k,j) for all
(k,7) € domb, plus further conditions on m and

(Q) (g < m, i <1). Namely, assuming dom y;
fmlte want m > max(domy;) and

d(fyél,y?<pl>) < 6; whenever i <I €N, fe F,pcp H{f}

One checks e><|stence of suitable ]Z(Q) (g € domyy,
i <) for given y = y] € E; follows from (2).

For simplicity let domv, = [0,m;] and m; ;= |P)| -1
(le N), with m = m; determined by . To com-
plete the constructlon there is some freedom
in choice of ;. We will ensure each f € F

has a computable p-name; the (I 4+ 1)-block

jc()Q),...,]l(Q) relevant to f can be picked out of

v-name a based on this. More rigourously, fix
choice function ¢ :C F x N3 - N s.t.

d(fyé'ayfu(f,l,k,j)) < O for all (f,l,k,j) € dom =
{((filk,7) | fEFAI<kAL<j<m}.

For any fixed k and f € F, from p € p~1{f}
and a € domv we will be able to compute

i, if k<1,
Lk, U<k,



and observe d(fyél,yfj) < 0 this computation
is possible since ({f} xN x{k}xN)ndomc" is finite.

To define v (I € N), proceed in stages; at the
end of stage ¢ we will have each v; defined on
an interval [0, m; ;] with

y[0,my 3] = {[fjl~, |5 <i} forallleN. (3)

In stage 0 we define m; o := 0 and declare 0 € v; *{[fo]~,}
for all I; also let lp := 0 and p(® := 0¥ (€ p~H{fol).

At stage i + 1 let [,y = inf{l € N | (Vj < )(fix1 o4 fj)}
(i € N). For each | < l;y1 we have fir1 € Ujcil[fjle,
so (Fpy < mu) (wip ™) = [fira]~), and we leave v
unmodified, my ;41 = my,;. Forl > 1,41 we have [fit1]~ &

{Ifi]~ (+1)

j < iy = y[0,my], so let p = Myl =
my; + 1 and Vl(ml,i-l-l) L= [fi+1]~l-

In either case (3)|;4+1 holds (by inspection),
computability of (m;;41); € NY holds by induc-
tion, and the computability of pli+1) € p=1{f;1 1}
will follow once we show [;41 < co. Suppose



that /;41 = oo; then (V)35 < )(fix1 ~ f). BY
the pigeonhole principle and the fact (P;); are
increasingly fine, we get (3j < )(VD)(fi+1 ~1 fi),
so fi4+1 = f; since (P;); is generating. This
contradicts injectivity of e — fe.

Finally, since {f.|e e N} = F, (Vi)(3)|; implies
v (U;[0,my;]) = P, for each I. It is clear by
construction v; injective, so sup; my i finite, and
sup;m;; = m; = |P;|—1 as previously assumed.

L]

Clear how to check compactness of v w.r.t. (B(y;?; Hk))g’vzlz

use choice function ¢t :C N3 — N with d(y/, yf+(z k) < Ok

for all (I,k,5) € domct := {(L,k,j) |1 < k,1 <j <m},
and from a € domv compute

u = (jp, ifF 1>k Tk, 5), ifl<k);

this uses finiteness of N x {k} x N)ndomc™.

If idy € F, this argument (and data jo,...,J5—1 in names
a € domv) can be omitted. Despite these good
properties, several reasons to simplify or gen-
eralise above proof.



Examples for ~;

Consider equivalence relations ~; (I € N) de-
fined from. choice function ¢ as follows: fix
¢:C FxN3—=N such that

d( Syl yscri) <0 forall (f,1,4,5) € domé:=
{(f.l,4,5) i <1,1<j<m},
define f ~; f/if &(f,-),&(f',-) agree on ([0,1] xN2)n
domé(f,-). Such ~j; are increasingly fine, have
F/~; finite and (2) holds (definition of v can
further be ‘simplified’ by requiring strictly ;9 =
&(f,1,4,5) for all i <1 whenever f e vy(q), ¢ <my).

If f, f' € F distinct over U.E;, pick k, x € E}.

s.t. f(z) #= f'(z), and w.l.o.g. assume (V1) (E; C
Ej41). Forl > kst 20 < d(fz, f'z) and j €

[r] s.t. yg — z we must have &(f,1,1,7) #= &(f', 1,1, %),
hence f «; f'. So the separating condition may

be replaced by

(Vf, f, S F)(f # .f/ — f|UkEk # f/|UkEk)7
and UpE;. chosen as any dense countable sub-
set of g~ 1im A (while assuming (VI)(E; C Ej11)).
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