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Notation

X separable metric space

RX := {ρ ρ :⊆ NN → X onto}
Id := {ν ν :⊆ N → X dense}

Fix open cover (Ui)
r
1, [r] := {1, . . . , r}

R : X ⇒ [r], x 7→ {i Ui 3 x}
S : [r] ⇒ X, i 7→ Ui
Tε : X ⇒ X,x 7→ {y d(x, y) < ε} (ε > 0)

δ ≤a ρ :⇐⇒ (∀ε > 0) (Tε is (δ, ρ)-computable )

δ ≤ ρ ⇐⇒ (idX : X → X is (δ, ρ)-computable )

δ ∈ RX compact if for each finite open cover

(Ui)
r
1, R : X ⇒ [r] is (δ, δN |[r])-computable



Example: If X compact and ν ∈ Id, the stan-
dard representation (equivalent to Cauchy rep-
resentation in case of a computable metric space)
defined by

p ∈ δ−1{x} :⇐⇒ {pi − 1 i ∈ N ∧ pi ≥ 1} = {k α(k) 3 x},

α : N → TX , 〈i, j〉 7→ Bd(ν(i); νQ+(j)).

Lemma 1. Suppose X compact, δ, ρ ∈ RX, δ

compact. If ρ-computable points are dense in

X then δ ≤a ρ.

Proof. Given ε > 0, pick open cover (Ui)
r
1 with

maxi diamUi < ε. Then (δ, δN |[r])-computability

of R and (δN |[r], ρ)-computability of S implies

(δ, ρ)-computability of Tε.

Some generalisation is possible. Consider e.g.

Lemma 2. If (X, d) a totally bounded metric

space and ν ∈ Id then for any r ∈ Q+ there ex-

ists finite A ⊆ dom ν with X = ∪a∈ABd(ν(a); r).



For ν0, ν1, ν, λ ∈ Id, write

ν ≤a λ :⇐⇒ (∀ε > 0)(∃h ∈ P (1))(∀c)
(
c ∈ dom ν =⇒ c ∈ (λ ◦ h)−1B(ν(c); ε)

)
.

dom(ν0 ⊕ ν1) :=
.
∪
i
(2 dom νi + i), ν0 ⊕ ν1(2a+ i) := νi(a)

ν ∈ Id compact if any finite open cover (Ui)
r
1

admits some f ∈ P (1) with

dom ν ⊆ f−1[r] ∧ (∀a ∈ dom ν)
(
ν(a) ∈ Uf(a)

)
(1)

Proposition 3. Let X be a separable metric
space, ρν the Cauchy representation for ν ∈ Id.
For any ν, λ ∈ Id and δ, ρ ∈ RX,

1. ν ≤a λ ⇐⇒ ρν ≤a ρλ

2. δ ≤ ρ =⇒ δ ≤a ρ

3. δ t ρ is a least upper bound of {δ, ρ} w.r.t. ≤a

4. ν ⊕ λ is a least upper bound of {ν, λ} w.r.t. ≤a

Proof of (3): First apply (2) in δi ≤ δ0 t δ1

(i < 2). If also δi ≤a ρ, say via Fi at precision

ε (i < 2), then δ0 t δ1 ≤a ρ at precision ε via

F :⊆ NN → NN , i.p 7→ Fi(p).



Each ≤a also reflexive and transitive. Thus above op-
erations give rise to upper semilattice structures, on
RX/≡a, Ia := Id/≡a and (Id ∩ XN )/≡a. If X compact,
analogue of Lemma 1 for dense partial sequences im-
plies compact ν ∈ Id form a least element of Ia (later
we show there exists compact ν ∈ Id).

Proposition 4. 1. ρ≤ 6≤a ρ>

2. ρ ≤a ρCf

3. ρ< ≤a ρ≤ and symmetrically (replace <,≤ by >,≥).

Hence ρ ≤a ρCf, ρ≤, ρ≥ and ρb,n ≤a ρCf, ρ≥, ρ≤ and (3) are
the only ≤a-reductions not shown in the left figure.

Proof. (1): Let F realise ρ≤ ≤a ρ> to precision ε; where
p ∈ ρ−1

≤ {x} enumerates all rationals ≤ x, q = F (p) enu-
merates strict right Dedekind cut of some y s.t. |x−y| <
ε. q0 is output after finitely many steps, with only finite
prefix pN of p read from input. Let p′ ∈ ρ−1

≤ {z} for some

z ≥ νQ(q0) + ε (> y + ε > x) with (p′)N = pN . Then
F (p′)0 = q0, so (ρ< ◦ F )(p′) < νQ(q0) ≤ z − ε, contradiction.

(3): Recall the T0-topology τ< = {(x,∞) x ∈ R } ∪
{∅,R } on R (with respect to which ρ< is admissible)
and the following
Lemma 5. For any D ⊆ R , a function f :⊆ R → R with
dom f = D is (τ<, τ<)-continuous iff it is left-continuous
and nondecreasing.



We specify f which is (ρ<, ρ≤)-computable and lies in the
open ε-envelope of idR . First, consider f : R → R as in
Lemma 5 which is also piecewise constant: take f(t) =
ci for ti < t ≤ ti+1 where strictly increasing (ci)i∈Z , (ti)i∈Z
have inf ti = −∞, sup ti =∞, ci−ε ≤ ti∧ti+1 < ci+ε (i ∈ Z ). If (ti)i
are uniformly right-computable and (ci)i uniformly left-
computable then f is (ρ<, ρ<)-computable. If (ci)i∈Z ⊆
R \Q then any (ρ<, ρ<)-realiser of f also (ρ<, ρ≤)-realises

it. For instance, if ε = 2−j+
1

2 we can take tn := nε,
cn := tn + ε

2
= 2n+1

2
ε (6∈ Q), n ∈ Z .

Note now that (1) (with transitivity of ≤a) implies δ0 6≤a

δ1 for all (δ0, δ1) ∈ {ρ≤, ρ<, ρCn} × {ρCf, ρb,n, ρ≥, ρ, ρ>}. With sym-
metric version (exchanging <,≤ with >,≥), shows ρCn 6≤a

δ for all δ ∈ S \{ρCn}, where S := {ρCf, ρ≤, ρ≥, ρb,n, ρ, ρ<, ρ>, ρCn}
(for convenience we fix n), while δ ≤ ρCn for all δ ∈ S.
For δ0 ∈ {ρ≤, ρ≥} again (1) and figure completely deter-
mine either δ0 6≤a δ1 or δ0 ≤ δ1 as δ1 ∈ S varies. Case
δ0 ∈ {ρ<, ρ>} is similar except where (3) and its sym-
metric version apply. So assume δ0 ∈ {ρCf, ρb,n, ρ}, and
δ1 ∈ S \ {ρ<, ρ>, ρCn} (otherwise δ0 ≤ δ1). By (2) we
already have δ0 ≤a δ1, which completes the proof.
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From the figure (ρ ≡a ρb,n ≡a ρCf) and known facts it fol-
lows ≤a does not imply continuous reducibility ≤t (nor
does ≡a guarantee the same final topology). The con-
verse inclusion (≤t) ⊆ (≤a) also fails in general, using
next construction from [?] (with Proposition 3(1)).

Definition 6. Let (Y, ν) be a numbered set with |Y | ≥ 2
and fix x, y ∈ Y with x 6= y. For each A ⊆ N write

νA(2k+i) = νAx,y(2k+i) :=


ν(k), if i = 0 ∧ k ∈ dom ν,

x, if i = 1 ∧ k ∈ A,

y, if i = 1 ∧ k ∈ N \A
(i < 2).

Iterating, we can compare towers constructed this way.
First consider a generalisation of compact ν ∈ Id.



Definition 7. Let X be a separable metric space.
ν ∈ Id separating at finite precision if for any
distinct x, y ∈ X there exist open cover (Ui)

r
1,

V,W ∈ TX, h ∈ P (1) with

x ∈ V ∧ y ∈W ∧ (∀c ∈ ν−1(V ∪W ))(c ∈ h−1[r] ∧ ν(c) ∈ Uh(c))∧
{i Ui ∩ V 6= ∅ 6= Ui ∩W} = ∅.

Theorem 8. Let X be a separable metric space,

ν0, . . . , νn, λ, λ′ ∈ Id, Ai, B ⊆ N (i < n ∈ N ), En := {xi, yi
i < n} ⊆ X and x, y ∈ X distinct. Suppose ν0 separat-

ing a.f.p., νi+1 = (νi)Ai
xi,yi for all i < n and λ′ = λBx,y. If

En ∩ {x, y} = ∅ and B is nonrecursive then λ′ 6≤a νn.

Proof. Fix (Ui)
r
1, V,W, h as in definition of sep-

aration a.f.p., and pick ε > 0 suff. small that
B(x; ε) ⊆ V ∧ B(y; ε) ⊆ W ∧ Nε(En) ∩ {x, y} = ∅. Also
suppose λ′|2N+1 ≤a νn at precision ε via f ∈ P (1).
Write k ∈ N , a = f(2k + 1) =

∑n
i=0 ai2

i where
an ∈ N , (ai)i<n ⊆ {0,1}. The last requirement
on ε means λ′(2k + 1) ∈ {x, y} =⇒ νn(a) ∈ im ν0 \ En
and ai = 0 for i < n (inductively for m = n, . . . ,1,
use

im ν0\En 3 νm(
m∑
j=0

bj2
j) = νAm−1

m−1(
m∑
j=1

bj2
j) = νm−1(

∑
j<m

bj+12j)



where (bj)m0 = (ai)n0, (ai+1)n−1
0 , . . . , (ai+n−1)1

0). So, we

get νn(a) = νn(an2n) = · · · = ν1(an21) = ν0(an)

while g : k 7→ an =
⌊
2−nf(2k + 1)

⌋
is com-

putable with im g ⊆ dom ν0.

(λ′(2k + 1) = x =⇒ g(k) ∈ h−1B0) ∧ (λ′(2k + 1) =

y =⇒ g(k) ∈ h−1B1) for all k ∈ N where B0 := {i
B(x; ε) ∩ Ui 6= ∅} and B1 := {i B(y; ε) ∩ Ui 6= ∅}. In

particular, B ≤m B0 via h ◦ g, which implies B

recursive, a contradiction. So, λ′ 6≤a νn.
Lemma 9. 1. A ≤m B =⇒ νA ≤ νB,

2. If x 6= y ∧ {xi, yi i < n} ∩ {x, y} = ∅ ∧ ∅ 6= A 6=
N ∧(∀i < n)(νi+1 = (νi)Ai

xi,yi) and λBx,y ≤a (νn)Ax,y where
ν0 separating a.f.p. then B ≤m A.

Proof. (1): Fix f ∈ R(1) such that A = f−1B

and let g : N → N ,2k+i 7→

2k, if i = 0,

2f(k) + 1, if i = 1
.

Then one checks νA ≤ νB via g.

(2): Fix (Ui)
r
1, V,W, h as in definition of separa-

tion a.f.p. (for x 6= y), ε > 0 such that B(x; ε) ⊆



V ∧ B(y; ε) ⊆ W ∧ Nε(En) ∩ {x, y} = ∅ where En :=

{xi, yi i < n}. Let g ∈ P (1) witness λB ≤a (νn)A at

precision ε and denote l : N → N , k 7→
⌊

1
2
g(2k + 1)

⌋
,

Ci := {k ∈ N g(2k + 1) ≡ i (mod 2)} (i = 0,1). Also

let B0 := {i B(x; ε)∩Ui 6= ∅}, B1 := {i B(y; ε)∩Ui 6= ∅},
and choose c ∈ A, d ∈ N \A, m : k 7→

⌊
2−nl(k)

⌋
and f : N → N , k 7→


c, if k ∈ C0 ∧m(k) ∈ h−1B0,

d, if k ∈ C0 ∧m(k) ∈ h−1B1,

l(k), if k ∈ C1

;

plainly C0, C1 are disjoint recursive sets (with

union N ), so f ∈ P (1). We show f ∈ R(1) with

(∀k)(k ∈ B ⇐⇒ f(k) ∈ A).

Firstly, if k ∈ C0 then

ε > d(λB(2k + 1), (νn ◦ l)(k))

=⇒ (νn ◦ l)(k) ∈ im ν0 \ En
=⇒ l(k) = an2n

where an = m(k). So (νn ◦ l)(k) = νn(an.2n) =

· · · = ν0(an.20) = (ν0 ◦m)(k) (this also shows

C0 ⊆ m−1 dom ν0). Now definition of B0, B1



implies (λB(2k+1) = x =⇒ m(k) ∈ h−1B0)∧(λB(2k+

1) = y =⇒ m(k) ∈ h−1B1), so k ∈ C0 implies

k ∈ B ⇐⇒ f(k) ∈ A. For k ∈ C1, instead

λBx,y(2k + 1) = ((νn)Ax,y ◦ g)(2k + 1) with k ∈ B ⇐⇒
l(k) ∈ A (this uses d(x, y) ≥ ε). So f has the

properties required.

In particular, for any νn, x, y as above, the map

α : A 7→ (νn)Ax,y induces an embedding of ≤m-

degrees in ≤a-degrees with least element [νn]≡a.

Randomness and density

Definition 10. Consider a bounded effective

metric space (X, d, ν0). A denseness test (A, a, j)

has A ⊆ N infinite c.e., a ∈ dom ν0, j ∈ N ; ξ ∈
XN fails (A, a, j) if ξ ∈ ∩l∈AXN \ σ−l

(
α〈a, j〉 ×XN ),

passes (A, a, j) if ξ ∈ ∪l∈Aσ−l
(
α〈a, j〉 ×XN ); these

define resp. closed, open sets in XN .

Irand
d := {ξ ∈ XN ξ passes all denseness tests}.



We introduce another generalisation of the def-
inition of compact sequences.
Definition 11. Suppose X a separable metric
space, (Ui)

r
1 a finite open cover, ε > 0 with

each Nε(Ui) nondense and ν ∈ Id, f ∈ P (1)

s.t. (1) holds. Then ν is properly covering.

If ν ∈ Id is properly covering then |X| ≥ 2; any
separating a.f.p. dense sequence in a compact
space X with |X| ≥ 2 is properly covering.

Proof. For each x ∈ X we have (Ui(x))rx1 , TX 3
Vx 3 x and hx ∈ P (1) s.t. (∀c ∈ ν−1Vx)(ν(c) ∈ Uhx(c)(x)).

By compactness there exist s and (xi)i<s ⊆ X

with X = ∪i<sVxi. We can take a formal disjoint
union of (Uj(xi))j∈[rxi]

(i < s), say (Ui)i∈[r]
where r :=

∑
i<s rxi, and by adding appropriate

constants to each hxi (i < s) we get h ∈ P (1)

with (∀c ∈ dom ν)(ν(c) ∈ Uh(c)).

Proper covering does not imply separation at
finite precision.



Proposition 12. 1. Suppose ν0, . . . , νn ∈ Id, (∀i <
n)(νi+1 = (νi)Ai

xi,yi), ν0 total & properly covering, and

λ ∈ Irand
d . Then λ 6≤a νn.

2. Suppose |X| ≥ 2. For any ν ∈ Irand
d there exists

λ ∈ XN \ Irand
d with ν ≤ λ.

3. Irand
d is closed under ⊕.

Proof. (1): Suppose λ ≤a νn via f ∈ P (1) at

precision ε, where ε suff. small that Nε({xi, yi})
and Nε(Uj) nondense for each i < n and each

j ∈ [r], for some open cover (Uj)
r
1. We have

dom νn = N =
.
∪i<nAi

.
∪2nN where each Ai

is infinite c.e. with νn(Ai) = {xi, yi} ⊆ im νi+1

(i < n). Since λ total, f ∈ R(1) with some

Ai ∩ im f (i < n) or 2nN ∩ im f infinite (by pi-

geonhole principle). Each of these sets is c.e.

If Ai∩ im f infinite, its νn-image (⊆ {xi, yi}) lies

within ε of λ(f−1Ai) which is dense, contra-

dicting choice of ε. If 2nN ∩ im f infinite, let h

be as in definition of ν0 for cover (Ui)
r
1. Then



each h−1{i} is c.e., so f−1(2n(h−1{i})) is c.e.,

and at least one such set is infinite, so has λ-

image dense & ⊆ Nε(Ui) (contradicting choice

of (Ui)
r
1, h).

(2): For any ν ∈ Irand
d 63 λ we have ν ⊕ λ 6∈

Irand
d . Such λ can always be found e.g. as a

nondense total sequence (extend ⊕ definition).

(3): Let λ0, λ1 ∈ Irand
d . For any denseness

test (A, a, j) we have some i < 2 such that

A ∩ (2N + i) is infinite. Clearly λi ≤ λ0 ⊕ λ1

via (injective total recursive) h : k 7→ 2k + i,

and B := h−1(A ∩ (2N + i)) is infinite c.e. We

know λi passes the denseness test (B, a, j), say

k ∈ B ∩ λ−1
i α〈a, j〉, so (λ0 ⊕ λ1)(h(k)) = λi(k)

shows λ0 ⊕ λ1 passes (A, a, j).



Remains to establish Irand
d 6= ∅. For topologi-

cal space Y , a continuous surjection T : Y → Y
is one-sided topologically mixing if

(∀U, V ∈ TY \{∅})(∃N ∈ N )(∀n) (n ≥ N =⇒ T n(U) ∩ V 6= ∅) .

One checks

Lemma 13. For any separable metrizable X

and Y = XN , left shift σ : Y → Y is one-sided

topologically mixing ( w.r.t. product topology).

More generally, consider a complete effective

metric space (Y, d, ν) with ideal ball number-

ing α and continuous one-sided top. mixing

T : Y → Y . By definition, each ∪m∈AT−mV
dense (V ∈ TY \{∅}, A infinite), so in particular

RA := ∩a∈domα∪m∈AT−mα(a) and R := ∩{RA
A infinite c.e.} dense Gδ in Y (by Baire cate-

gory theorem). We now apply to Y = XN . Re-

call a formal inclusion < of total basis number-

ings α, β of space X has the weak basis prop-

erty if (∀b)(∀x ∈ X)(∃a)(x ∈ β(b) =⇒ x ∈ α(a)∧a < b).



Proposition 14. Let (X, d, ν0) be a complete
bounded effective metric space with ν0 total,
and equip XN with the (bounded) product met-
ric d̂(ξ, η) :=

∑
i∈N 2−i−1d(ξi, ηi) and dense se-

quence γ : N → XN defined by γ(〈w〉)(i) :=ν0(wi), if i < |w|,
ν0(i), if i ≥ |w|

. Then basis numberings

defined by

αXN : N → TXN , 〈a, r〉 7→ Bd̂(γ(a); νQ+(r)),

β : N → TXN , 〈a, r,N〉 7→
∏
i<N

Bd(γ(a)i; νQ+(r))×XN

are effectively equivalent, and any ξ ∈ XN has(
(σlξ)l∈N ∈ Irand

d |XN ⇐⇒ ξ ∈ R|XN ,σ =⇒ ξ ∈ Irand
d |X

)
;

in particular Irand
d |X is residual in XN .

Proof. It is convenient to use the following
binary relations on N :

〈a, r〉 < 〈b, q,N〉 :⇐⇒ max
i<N

d(γ(a)i, γ(b)i) + 2i+1νQ+(r) < νQ+(q),

〈a, r,N〉 <′ 〈b, q〉 :⇐⇒
∑
i<N

2−i−1(νQ+(r) + d(γ(a)i, γ(b)i))

+C0.2
−N < νQ+(q);



here Q+ 3 C0 ≥ diam(X, d) is a fixed bound.

We first check <, <′ are c.e. formal inclusions

(of αXN in β, resp. of β in αXN ), each with the

weak basis property.

Next denote B〈a,r〉 := {〈b, q〉 〈b, q〉 < 〈〈a〉, r,1〉} (a, r ∈
N ). Clearly B〈a,r〉 is nonempty and c.e. uni-

formly in a, r ∈ N , and for any A ⊆ N the con-

dition (∀a, r)
(
ξ ∈ ∪l∈Aσ−l(α〈a, r〉 ×XN )

)
is equivalent

to (∀a, r)(∃〈b, q〉 ∈ B〈a,r〉)
(
ξ ∈ ∪l∈Aσ−lαXN 〈b, q〉

)
. In par-

ticular, this is implied by (∀b, q)
(
ξ ∈ ∪l∈Aσ−lαXN 〈b, q〉

)
,

or equivalently (∀b, q)(∃k ∈ A)
(
(σl+kξ)l∈N ∈ αXN 〈b, q〉 × (XN )N

)
.

Quantifying over infinite c.e. A, thus (ξ ∈ R|XN ,σ ⇐⇒
) (σlξ)l∈N ∈ Irand

d |XN implies ξ ∈ Irand
d |X.

Example: X = {0,1} corresponds (easily checked)

to Irand
d |X = {χB B ⊆ N bi-immune}, i.e. those

sets B for which neither B nor N \ B contains

an infinite c.e. set.



Comparison with other tests

For any A ⊆ N , N ∈ Π0
1(X) denote

FA,N :=
∏
i∈N

Wi where Wi =

X, if i 6∈ A,

N, if i ∈ A
.

FA,X\α〈a,j〉 = {ξ ξ fails (A, a, j)} for denseness test (A, a, j),

XN\Irand
d = ∪{FA,N A infinite c.e., N = X\α〈a, j〉, a, j ∈ N }.

??For X effectively compact,

f : {0,1}N ×K>(X)→ K>(XN ), (χA,K) 7→ FA,K

computable. More generally, suppose |X| ≥ 2.

If µ0 is a measure positive on nonempty open

sets, for any test (A, a, j) we have µ0(X\B0) < 1

for B0 := α〈a, j〉, so FA,X\B0
is a closed λ-

nullset. Here λ is the product measure on XN

corresponding to measure µ0 on X; also one

can show λ a computable probability measure

if µ is and X bounded complete.



Effectiveness and approximability

When choosing naming system γ for a given
space Y , several types of requirements [?, §2.7]:

(a) require fi :⊆ Xi → Y computable (i ∈ I)

(b) require fi :⊆ Y → Zi computable (i ∈ I)

(c) require operations fi :⊆ Y ni → Y computable (i ∈ I)

For example, types (a)+(c) and (b) resp. addressed by
Proposition 15. Fix represented sets (Xi, ρi), maps fi :⊆
Xi → Y , gi :⊆ Y → Y (i ∈ N ) & suppose

Y = ∪i∈N ,w∈N ∗ĝw(im fi∩dom ĝw) where ĝw := gw|w|−1◦. . .◦gw0.

δ :⊆ N N → Y defined by dom δ =
.
∪i∈N ,w∈N ∗ i.〈w〉.(ρ−1

i f−1
i dom ĝw)

and δ(i.〈w〉.p) := (ĝw ◦ fi ◦ ρi)(p) has δ ∈ RY . fi is (ρi, δ)-
computable and gi is (δ, δ)-computable (i ∈ N ).

Proposition 16. Fix represented sets (Yi, δi), fi :⊆ X →
Yi (i ∈ N ) where |X| ≤ 2ℵ0. Then there exists ρ ∈ RX

such that each fi is strongly (ρ, δi)-computable (i ∈ N ).

More sophisticated results for type (c), see [?, Thm
2.7.15], [?], [?].



For requirements of type (a)+(b) or (b)+(c),
in general there exist counterexamples:
Proposition 17. 1. there exist sets X,Y, Z, maps f :⊆

X → Y , g :⊆ Y → Z and total numberings ν, µ of
X,Z respectively, such that
¬(∃λ :⊆ N → Y )(f ◦ ν ≤ λ ∧ g ◦ λ ≤ µ).

2. there exist sets Y, Z, maps f :⊆ Y → Y , g :⊆ Y → Z
and total numbering µ of Z such that
¬(∃λ ∈ TN(Y ))(f ◦ λ ≤ λ ∧ g ◦ λ ≤ µ).

3. there exist separable metric spaces Y, Z, maps f :⊆
Y → Y , g :⊆ Y → Z and µ ∈ IZd ∩ Z

N such that

¬(∃λ ∈ IYd )(f ◦ λ ≤ λ ∧ g ◦ λ ≤ µ).

Proof. (1): X = Y = Z denumerable, f = g = idX, ν
total injective numbering of X, µ a total numbering s.t. ν 6≤
µ (e.g. an incomparable total injective numbering, of
which there are 2ℵ0; see [?]).
(2): Y = Z denumerable, µ a total injective numbering,
h : N → N a nonrecursive bijection with Nh : N → N̄ , k 7→
# Fix(hk) not lower semicomputable, f = µ ◦ h ◦ µ−1,
g = idY . If λ ∈ TN(Y ) and n ∈ P (1) (λ, µ)-realises g, =Y

is [λ, λ]-decidable via 〈a, b〉 7→ δn(a),n(b) (since g, µ injec-
tive). So Nf,M : N → N , k 7→ # Fix(fk|λ[0,M)) (M ≥ 1)
are uniformly effective provided also f is (λ, λ)-effective:
consider

an := µa < M
(

(fk ◦ λ)(a) = λ(a) 6∈ {λ(ai) i < n}
)



with convention µa < M (False) = M , inductively for
n ≤ M and N := µn (an = M) (≤ M). Then λ|{ai i<N} is

injective with image Fix(fk|λ[0,M)), so Nf,M(k) = N .

Further, (fk ◦ λ)(a) = λ(a) iff (hk ◦ µ−1 ◦ λ)(a) = (µ−1 ◦
λ)(a), so Fix(hk|(µ−1◦λ)[0,M)) = µ−1 Fix(fk|λ[0,M)). In unions
over increasing M , Fix(hk) = µ−1 Fix(fk) and Nh(k) =
supM Nf,M(k). This contradicts choice of h.
(3): Y = Z = R , f = idR +α (α ∈ R \ Q), g = idR ,
µ = νQ. The only solution for λ :⊆ N → Y is then the
empty partial sequence.

Next, consider (a),(b),(c) when maps are ap-

proximable rather than computable. Here f :⊆
X → Y approximable w.r.t. ν ∈ IXd , λ ∈ IYd if

f ◦ ν ≤a λ (extending definition of ≤a).

If X uniformly discrete, (1), (2) transfer since

ν ≤ λ iff ν ≤a λ for any ν, λ ∈ IXd = TN(X). If X

compact, instead take ν0 ∈ IXd compact and

pick ν, µ ≤a-incomparable. Then

¬(∃λ :⊆ N → Y )(f ◦ ν ≤a λ ∧ g ◦ λ ≤a µ).



Lemma 18. If X compact, ν ∈ Id compact and

π : X → Y a continuous surjection then π ◦ ν is

compact.

Proof. Uses Lebesgue numbers and uniform continuity
of π; see [?].

Corollary 19. Let Y, Z be compact metric spaces,

f : Y → Y , g : Y → Z (total) continuous surjective

and µ ∈ IZd . For any compact λ ∈ IYd we have

f ◦ λ ≤a λ ∧ g ◦ λ ≤a µ.

Proof. Follows from Lemma 18 and analogue

of Lemma 1.

Given existence of compact λ ∈ IYd , this is a

positive result for requirements of type (b)+(c).



Requirements of type (a),(b)

For ν ∈ IX we denote the cylindrification by ν̃:

dom ν̃ = 〈dom ν,N 〉, ν̃〈i, j〉 := ν(i).

Proposition 20. Fix separable metric spaces

X,Yi, maps Ψi : X → Yi and λi ∈ I
Yi
d (i < n).

There exists ν ∈ IXd s.t. (∀i < n)Ψi ◦ ν ≤a λi.

Proof. Fix ν0 ∈ Id∩XN and (for i < n, k ∈ N )

a(i)
k := µn

(
n ∈ dom λ̃i ∧ ¬(∃j < k)(n = aj)∧

d((Ψi ◦ ν0)(k), λ̃i(n)) < 2−k
)
.

We denote ν〈a(0)
k , . . . , a(n−1)

k 〉 := ν0(k), with ν unde-

fined elsewhere. For any ε > 0, maxi<n d((Ψi ◦
ν)〈a(0)

k , . . . , a(n−1)
k 〉, λ̃i(a(i)

k )) < ε fails only for finitely

many k (among those with ε ≤ 2−k). We also

have im ν = im ν0 and λ̃i ≡ λi for each i < n.



Proposition 21. Let X,Y be separable metric
spaces, Ψ : X → Y , ν ∈ IXd , λ ∈ IYd as appropriate.
Then:

1. for any ν there exists λ with Ψ ◦ ν ≤ λ; if Ψ contin-
uous onto Y , there exists λ with Ψ ◦ ν ≡ λ,

2. if Ψ open, for any λ there exists ν with Ψ ◦ ν ≤ λ,

3. for any ν there exists λ with Ψ ◦ ν ≤a λ,

4. for any λ there exists ν with Ψ ◦ ν ≤a λ.

Proof. (2): Each Ψ−1{λ(a)} separable (a ∈ domλ)

so if nonempty fix a dense subsequence (x(a)
i )i∈N

and let ν〈a, i〉 := x
(a)
i (i ∈ N ) (ν undefined

elsewhere). Since Ψ open, Ψ−1 imλ is dense,

hence so is im ν.

For (4), if Ψ onto we can construct ν ∈ IXd in

a different way. First, pick ν0 ∈ IXd ∩ X
N and

λ ∈ IYd . Let dom ν = {ak k ∈ N }, ν(ak) = ν0(k) for

ak := µn
(
n ∈ dom λ̃ ∧ ¬(∃j < k)(n = aj) ∧ λ̃(n) ∈ Uk

)
(k ∈ N )



where (Uk)k∈N ⊆ TY \{∅} has the property (∀x ∈
imλ)(∀N)(∃k ≥ N)(Uk 3 x). In place of dom ν ⊆
dom λ̃ we now have equality: for cl the lth el-

ement of dom λ̃ in ascending order, and Nl :=

µk
(
Uk 3 λ̃(cl) ∧ (∀l′ < l)(k > Nl′)

)
, we show cl ∈ {aj j ≤

Nl} (l ∈ N ). First, N0 = µk
(
Uk 3 λ̃(c0)

)
, so ¬(∃j <

N0)(c0 = aj) (as λ̃(aj) ∈ Uj) and then aN0
= c0.

Secondly, aNl+1
= min(λ̃−1UNl+1

) \ {aj j < Nl+1} and

UNl+1
3 λ̃(cl+1) so if cl+1 6∈ {aj j ≤ Nl+1} then aNl+1

<

cl+1, implying (∃k ≤ l)aNl+1
= ck ∈ {aj j ≤ Nk}.

But then Nl+1 > Nl ≥ Nk contradicts injectivity

of (ai)i∈N .

To ensure also Ψ ◦ ν ≡a λ̃, we assume com-

pactness. We also note two improvements on

Proposition 21(2) with similar conditions.

Proposition 22. Suppose X,Y are separable

metric spaces, λ ∈ IYd , Ψ : X → Y any map.

1. If Ψ onto and Y compact, there exists ν ∈ IXd such
that Ψ ◦ ν ≡a λ,



2. If Ψ−1 imλ = X and each Ψ−1{y} is compact (y ∈
imλ), there exists ν ∈ IXd such that Ψ ◦ ν = λ̃.

3. If Ψ−1 imλ = X and X compact, there exists com-
pact ν ∈ IXd such that Ψ ◦ ν ≤ λ.

Proof. (1): In view of the above, it remains

to construct (Uk)k appropriately. As Y com-

pact, let ν0 be such that ν0|2N+1 is dense

and 2(
∑

j<l nj + i) ∈ ν−1
0 Ψ−1{yli} (l ∈ N , i < nl)

where {yli i < nl} is a 2−l-spanning set for

Y . Then let Uk := B((Ψ ◦ ν0)(k); 2−bk) where bk =

l if 2
∑
j<l nj ≤ k < 2

∑
j≤l nj. This ensures

limk→∞ bk =∞ and so Ψ ◦ ν ≡a λ̃.

(2): For each a ∈ domλ, k ∈ N there is a

finite 2−k-spanning subset of Ψ−1{λ(a)}, say

(zi(a, k))i<m(a,k). Let ν〈a,
∑

j<km(a, j)+i〉 := zi(a, k)

for each i < m(a, k) (also ν〈a,m〉↑ if a 6∈ domλ).

Plainly (Ψ ◦ ν)〈a,m〉 = λ(a) = λ̃〈a,m〉 whenever a ∈
domλ ∧ m ∈ N , and both sides undefined for



a 6∈ domλ. Given x ∈ X, k ∈ N there ex-

ist a ∈ domλ, y ∈ Ψ−1{λ(a)} ∩ B(x; 2−k−1) and i <

m(a, k + 1) s.t. zi(a, k + 1) ∈ B(y; 2−k−1) ∩ im ν. Then

dim ν(x) < 2−k−1 + 2−k−1, and k was arbitrary.

We describe a general extension of (3) (of type

(b)+(c)):
Proposition 23. Let X,Y be separable metric
spaces, X compact, λ ∈ IYd , g :⊆ X → Y any map
with g−1 imλ = X, F a denumerable family of
(total) maps X → X. Also take (θk)k∈N ⊆ (0,∞)
with infk θk = 0, El ⊆ g−1 imλ a finite θl-spanning
set (l ∈ N ). Suppose ∼l (l ∈ N ) are equivalence
relations on F s.t. F/∼l finite,

(∀y ∈ El)(∀C ∈ F/∼l)(∀i ≤ l)(∃z ∈ Ei){fy f ∈ C} ⊆ B(z; θi),
(2)

and which are increasingly fine & satisfy sepa-

rating condition (∀f, f ′ ∈ F)(∃l)(f 6= f ′ =⇒ f 6∼l f ′).

Then there exists compact ν ∈ IXd with g◦ν ≤ λ
and (∀f ∈ F)(f ◦ ν ≤a ν).



Proof. Write Ek = {yk1, . . . , y
k
rk
} ⊆ g−1 imλ (a

θk-spanning set for X, k ∈ N ). Based on ∼l
(l ∈ N ) and an injective total numbering e 7→ fe
of F, we define ν with im ν = ∪kEk; surjectiv-

ity will follow from (2), density from infk θk =

0. Separating condition ensures the partitions

Pl := F/∼l (l ∈ N ) (with (∀l)Pl+1 ≥ Pl) are gen-

erating: |∩lAl| ≤ 1 for any Al ∈ Pl (l ∈ N ). If each

Pl is endowed with a numbering νl :⊆ N → Pl,
this leads to a representation ρ :⊆ NN → F:

dom ρ = {p ∈ N N (∀l)(pl ∈ dom νl) ∧ ∩lνl(pl) 6= ∅},
ρ(p) ∈ ∩lνl(pl).

Will return to numbering e 7→ fe and repre-
sentation ρ of F. Requirement for f ∈ F to
be (ν, ν)-approximable equivalent to f ◦ ν com-
pact — (roughly speaking) suggests to store
approximations to each f in each ν-name a.
Form of ν will be

a = 〈l; j0, . . . , jl; j
(0)
0 , . . . , j(0)

l ; . . . ; j(m)
0 , . . . , j(m)

l ; b̂〉 ∈ dom ν,

ν(a) = yljl;

(∀i < l)d(yiji, y
l
jl
) < θi, b̂ = b(l, jl) for a fixed choice

function b :⊆ N 2 → N with im b ⊆ domλ, dom b =



{(k, j) 1 ≤ j ≤ rk} and g(ykj ) = (λ ◦ b)(k, j) for all
(k, j) ∈ dom b, plus further conditions on m and

j
(q)
i (q ≤ m, i ≤ l). Namely, assuming dom νl

finite, want m ≥ max(dom νl) and

d(fyljl, y
i
j

(pl)

i

) < θi whenever i ≤ l ∈ N , f ∈ F , p ∈ ρ−1{f}.

One checks existence of suitable j(q)
i (q ∈ dom νl,

i ≤ l) for given y = yljl
∈ El follows from (2).

For simplicity let dom νl = [0,ml] and ml := |Pl| − 1
(l ∈ N ), with m = ml determined by l. To com-
plete the construction, there is some freedom
in choice of νl. We will ensure each f ∈ F
has a computable ρ-name; the (l + 1)-block

j
(q)
0 , . . . , j

(q)
l relevant to f can be picked out of

ν-name a based on this. More rigourously, fix
choice function c′′ :⊆ F × N 3 → N s.t.

d(fylj, y
k
c′′(f,l,k,j)) < θk for all (f, l, k, j) ∈ dom c′′ :=

{(f, l, k, j) f ∈ F ∧ l < k ∧ 1 ≤ j ≤ rl}.

For any fixed k and f ∈ F, from p ∈ ρ−1{f}
and a ∈ dom ν we will be able to compute

u :=

j
(pl)
k , if k ≤ l,
c′′(f, l, k, jl), if l < k,



and observe d(fyljl, y
k
u) < θk; this computation

is possible since ({f}×N ×{k}×N )∩dom c′′ is finite.

To define νl (l ∈ N ), proceed in stages; at the

end of stage i we will have each νl defined on

an interval [0,ml,i] with

νl[0,ml,i] = {[fj]∼l j ≤ i} for all l ∈ N . (3)

In stage 0 we define ml,0 := 0 and declare 0 ∈ ν−1
l {[f0]∼l

}
for all l; also let l0 := 0 and p(0) := 0ω (∈ ρ−1{f0}).

At stage i + 1 let li+1 := inf{l ∈ N (∀j ≤ i)(fi+1 6∼l fj)}
(i ∈ N ). For each l < li+1 we have fi+1 ∈ ∪j≤i[fj]∼l

,

so (∃p(i+1)
l ≤ ml,i)(νl(p

(i+1)
l ) = [fi+1]∼l

), and we leave νl

unmodified, ml,i+1 := ml,i. For l ≥ li+1 we have [fi+1]∼l
6∈

{[fj]∼l
j ≤ i} = νl[0,ml,i], so let p(i+1)

l := ml,i+1 :=

ml,i + 1 and νl(ml,i+1) := [fi+1]∼l
.

In either case (3)|i+1 holds (by inspection),

computability of (ml,i+1)l ∈ NN holds by induc-

tion, and the computability of p(i+1) ∈ ρ−1{fi+1}
will follow once we show li+1 < ∞. Suppose



that li+1 = ∞; then (∀l)(∃j ≤ i)(fi+1 ∼l fj). By

the pigeonhole principle and the fact (Pl)l are

increasingly fine, we get (∃j ≤ i)(∀l)(fi+1 ∼l fj),

so fi+1 = fj since (Pl)l is generating. This

contradicts injectivity of e 7→ fe.

Finally, since {fe e ∈ N } = F, (∀i)(3)|i implies

νl(∪i[0,ml,i]) = Pl for each l. It is clear by

construction νl injective, so supiml,i finite, and

supiml,i = ml = |Pl|−1 as previously assumed.

Clear how to check compactness of ν w.r.t. (B(ykj ; θk))rkj=1:

use choice function c+ :⊆ N 3 → N with d(ylj, y
k
c+(l,k,j)) < θk

for all (l, k, j) ∈ dom c+ := {(l, k, j) l < k,1 ≤ j ≤ rl},
and from a ∈ dom ν compute

u :=
(
jk, if l ≥ k; c+(l, k, jl), if l < k

)
;

this uses finiteness of N × {k} × N ) ∩ dom c+.

If idX ∈ F, this argument (and data j0, . . . , jl−1 in names

a ∈ dom ν) can be omitted. Despite these good

properties, several reasons to simplify or gen-

eralise above proof.



Examples for ∼l

Consider equivalence relations ∼l (l ∈ N ) de-
fined from choice function c̃ as follows: fix
c̃ :⊆ F × N 3 → N such that

d(fylj, y
i
c̃(f,l,i,j)) < θi for all (f, l, i, j) ∈ dom c̃ :=

{(f, l, i, j) i ≤ l,1 ≤ j ≤ rl},

define f ∼l f ′ if c̃(f, ·), c̃(f ′, ·) agree on ([0, l]×N 2)∩
dom c̃(f, ·). Such ∼l are increasingly fine, have
F/∼l finite and (2) holds (definition of ν can
further be ‘simplified’ by requiring strictly j(q)

i =

c̃(f, l, i, jl) for all i ≤ l whenever f ∈ νl(q), q ≤ ml).

If f, f ′ ∈ F distinct over ∪kEk, pick k, x ∈ Ek
s.t. f(x) 6= f ′(x), and w.l.o.g. assume (∀l)(El ⊆
El+1). For l ≥ k s.t. 2θl < d(fx, f ′x) and j ∈
[rl] s.t. ylj = x we must have c̃(f, l, l, j) 6= c̃(f ′, l, l, j),
hence f 6∼l f ′. So the separating condition may
be replaced by

(∀f, f ′ ∈ F)(f 6= f ′ =⇒ f |∪kEk 6= f ′|∪kEk),
and ∪kEk chosen as any dense countable sub-
set of g−1 imλ (while assuming (∀l)(El ⊆ El+1)).
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