Approximability, compactness and random dense sequences

Robert Kenny

Notation

X separable metric space

$$\mathcal{R}_X := \{ \rho \, | \, \rho : \subseteq \mathbb{N}^{\,\mathbb{N}} \to X \text{ onto} \}$$

$$\mathcal{I}_{\mathsf{d}} := \{ \nu \mid \nu : \subseteq \mathbb{N} \to X \text{ dense} \}$$

Fix open cover $(U_i)_1^r$, $[r] := \{1, ..., r\}$

$$R:X \Longrightarrow [r], x \mapsto \{i \mid U_i \ni x\}$$

$$S:[r] \Rightarrow X, i \mapsto U_i$$

$$T_{\epsilon}: X \rightrightarrows X, x \mapsto \{y \mid d(x,y) < \epsilon\} \ (\epsilon > 0)$$

$$\delta \leq_{\mathsf{a}} \rho : \iff (\forall \epsilon > 0) (T_{\epsilon} \text{ is } (\delta, \rho)\text{-computable })$$

 $\delta \leq \rho \iff (\mathsf{id}_X : X \to X \text{ is } (\delta, \rho)\text{-computable })$

 $\delta \in \mathcal{R}_X$ compact if for each finite open cover $(U_i)_1^r$, $R:X \rightrightarrows [r]$ is $(\delta, \delta_{\mathbb{N}}|^{[r]})$ -computable

Example: If X compact and $\nu \in \mathcal{I}_d$, the *stan-dard representation* (equivalent to Cauchy representation in case of a computable metric space) defined by

$$p \in \delta^{-1}\{x\} : \iff \{p_i - 1 \mid i \in \mathbb{N} \land p_i \ge 1\} = \{k \mid \alpha(k) \ni x\},$$

$$\alpha : \mathbb{N} \to \mathcal{T}_X, \langle i, j \rangle \mapsto B_d(\nu(i); \nu_{\mathbb{O}} + (j)).$$

Lemma 1. Suppose X compact, $\delta, \rho \in \mathcal{R}_X$, δ compact. If ρ -computable points are dense in X then $\delta \leq_a \rho$.

Proof. Given $\epsilon > 0$, pick open cover $(U_i)_1^r$ with $\max_i \operatorname{diam} U_i < \epsilon$. Then $(\delta, \delta_{\mathbb{N}}|^{[r]})$ -computability of R and $(\delta_{\mathbb{N}}|^{[r]}, \rho)$ -computability of S implies (δ, ρ) -computability of T_{ϵ} .

Some generalisation is possible. Consider e.g. **Lemma 2.** If (X,d) a totally bounded metric space and $\nu \in \mathcal{I}_d$ then for any $r \in \mathbb{Q}^+$ there exists finite $A \subseteq \text{dom } \nu$ with $X = \bigcup_{a \in A} B_d(\nu(a); r)$.

For $\nu_0, \nu_1, \nu, \lambda \in \mathcal{I}_d$, write

$$\nu \leq_{\mathsf{a}} \lambda : \iff (\forall \epsilon > 0)(\exists h \in P^{(1)})(\forall c) \Big(c \in \mathsf{dom}\, \nu \implies c \in (\lambda \circ h)^{-1} B(\nu(c); \epsilon) \Big).$$
$$\mathsf{dom}(\nu_0 \oplus \nu_1) := \dot{\cup}_i (2\,\mathsf{dom}\, \nu_i + i), \quad \nu_0 \oplus \nu_1(2a+i) := \nu_i(a)$$

 $\nu \in \mathcal{I}_{d}$ compact if any finite open cover $(U_{i})_{1}^{r}$ admits some $f \in P^{(1)}$ with

$$\operatorname{dom} \nu \subseteq f^{-1}[r] \wedge (\forall a \in \operatorname{dom} \nu) \left(\nu(a) \in U_{f(a)} \right) \tag{1}$$

Proposition 3. Let X be a separable metric space, ρ_{ν} the Cauchy representation for $\nu \in \mathcal{I}_d$. For any $\nu, \lambda \in \mathcal{I}_d$ and $\delta, \rho \in \mathcal{R}_X$,

- 1. $\nu \leq_a \lambda \iff \rho_{\nu} \leq_a \rho_{\lambda}$
- 2. $\delta \leq \rho \implies \delta \leq_{a} \rho$
- 3. $\delta \sqcup \rho$ is a least upper bound of $\{\delta, \rho\}$ w.r.t. \leq_a
- 4. $\nu \oplus \lambda$ is a least upper bound of $\{\nu, \lambda\}$ w.r.t. \leq_a

Proof of (3): First apply (2) in $\delta_i \leq \delta_0 \sqcup \delta_1$ (i < 2). If also $\delta_i \leq_a \rho$, say via F_i at precision ϵ (i < 2), then $\delta_0 \sqcup \delta_1 \leq_a \rho$ at precision ϵ via $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, i.p \mapsto F_i(p)$.

Each \leq_a also reflexive and transitive. Thus above operations give rise to upper semilattice structures, on \mathcal{R}_X/\equiv_a , $I_a:=\mathcal{I}_d/\equiv_a$ and $(\mathcal{I}_d\cap X^\mathbb{N})/\equiv_a$. If X compact, analogue of Lemma 1 for dense partial sequences implies compact $\nu\in\mathcal{I}_d$ form a least element of I_a (later we show there exists compact $\nu\in\mathcal{I}_d$).

Proposition 4. 1. $\rho \leq \angle a \rho$

- 2. $\rho \leq_a \rho_{Cf}$
- 3. $\rho_{<} \leq_a \rho_{<}$ and symmetrically (replace $<, \leq by >, \geq$).

Hence $\rho \leq_a \rho_{Cf}, \rho \leq_. \rho_{\geq}$ and $\rho_{b,n} \leq_a \rho_{Cf}, \rho \geq_. \rho_{\leq}$ and (3) are the only \leq_a -reductions not shown in the left figure.

Proof. (1): Let F realise $\rho_{\leq} \leq_{\mathsf{a}} \rho_{>}$ to precision ϵ ; where $p \in \rho_{\leq}^{-1}\{x\}$ enumerates all rationals $\leq x$, q = F(p) enumerates strict right Dedekind cut of some y s.t. $|x-y| < \epsilon$. q_0 is output after finitely many steps, with only finite prefix p^N of p read from input. Let $p' \in \rho_{\leq}^{-1}\{z\}$ for some $z \geq \nu_{\mathbb{Q}}(q_0) + \epsilon$ (> $y + \epsilon > x$) with $(p')^N = p^N$. Then $F(p')_0 = q_0$, so $(\rho_{<} \circ F)(p') < \nu_{\mathbb{Q}}(q_0) \leq z - \epsilon$, contradiction.

(3): Recall the \mathbf{T}_0 -topology $\tau_< = \{(x, \infty) \mid x \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$ on \mathbb{R} (with respect to which $\rho_<$ is admissible) and the following

Lemma 5. For any $D \subseteq \mathbb{R}$, a function $f :\subseteq \mathbb{R} \to \mathbb{R}$ with dom f = D is $(\tau_{<}, \tau_{<})$ -continuous iff it is left-continuous and nondecreasing.

We specify f which is $(\rho_<, \rho_\le)$ -computable and lies in the open ϵ -envelope of $\mathrm{id}_\mathbb{R}$. First, consider $f:\mathbb{R}\to\mathbb{R}$ as in Lemma 5 which is also piecewise constant: take $f(t)=c_i$ for $t_i< t\le t_{i+1}$ where strictly increasing $(c_i)_{i\in\mathbb{Z}}, (t_i)_{i\in\mathbb{Z}}$ have $\inf t_i=-\infty$, $\sup t_i=\infty$, $c_i-\epsilon\le t_i\wedge t_{i+1}< c_i+\epsilon$ $(i\in\mathbb{Z}).$ If $(t_i)_i$ are uniformly right-computable and $(c_i)_i$ uniformly left-computable then f is $(\rho_<,\rho_<)$ -computable. If $(c_i)_{i\in\mathbb{Z}}\subseteq\mathbb{R}\setminus\mathbb{Q}$ then any $(\rho_<,\rho_<)$ -realiser of f also $(\rho_<,\rho_\le)$ -realises it. For instance, if $\epsilon=2^{-j+\frac{1}{2}}$ we can take $t_n:=n\epsilon$, $c_n:=t_n+\frac{\epsilon}{2}=\frac{2n+1}{2}\epsilon$ $(\not\in\mathbb{Q}),\ n\in\mathbb{Z}$.

Note now that (1) (with transitivity of \leq_a) implies $\delta_0 \not\leq_a$ δ_1 for all $(\delta_0, \delta_1) \in \{\rho_\leq, \rho_<, \rho_{\mathsf{Cn}}\} \times \{\rho_{\mathsf{Cf}}, \rho_{\mathsf{b},n}, \rho_\geq, \rho, \rho_>\}$. With symmetric version (exchanging $<, \leq$ with $>, \geq$), shows $\rho_{\mathsf{Cn}} \not\leq_a \delta$ for all $\delta \in S \setminus \{\rho_{\mathsf{Cn}}\}$, where $S := \{\rho_{\mathsf{Cf}}, \rho_\leq, \rho_\geq, \rho_{\mathsf{b},n}, \rho, \rho_<, \rho_>, \rho_{\mathsf{Cn}}\}$ (for convenience we fix n), while $\delta \leq \rho_{\mathsf{Cn}}$ for all $\delta \in S$. For $\delta_0 \in \{\rho_\leq, \rho_\geq\}$ again (1) and figure completely determine either $\delta_0 \not\leq_a \delta_1$ or $\delta_0 \leq \delta_1$ as $\delta_1 \in S$ varies. Case $\delta_0 \in \{\rho_<, \rho_>\}$ is similar except where (3) and its symmetric version apply. So assume $\delta_0 \in \{\rho_{\mathsf{Cf}}, \rho_{\mathsf{b},n}, \rho\}$, and $\delta_1 \in S \setminus \{\rho_<, \rho_>, \rho_{\mathsf{Cn}}\}$ (otherwise $\delta_0 \leq \delta_1$). By (2) we already have $\delta_0 \leq_a \delta_1$, which completes the proof.

From the figure $(\rho \equiv_a \rho_{b,n} \equiv_a \rho_{Cf})$ and known facts it follows \leq_a does not imply continuous reducibility \leq_t (nor does \equiv_a guarantee the same final topology). The converse inclusion $(\leq_t) \subseteq (\leq_a)$ also fails in general, using next construction from [?] (with Proposition 3(1)).

Definition 6. Let (Y, ν) be a numbered set with $|Y| \ge 2$ and fix $x, y \in Y$ with $x \ne y$. For each $A \subseteq \mathbb{N}$ write $\nu^A(2k+i) = \nu^A_{x,y}(2k+i) := \begin{cases} \nu(k), & \text{if } i = 0 \land k \in \text{dom } \nu, \\ x, & \text{if } i = 1 \land k \in A, \\ y, & \text{if } i = 1 \land k \in \mathbb{N} \setminus A \end{cases}$ (i < 2).

Iterating, we can compare towers constructed this way. First consider a generalisation of compact $\nu \in \mathcal{I}_d$.

Definition 7. Let X be a separable metric space. $\nu \in \mathcal{I}_d$ separating at finite precision if for any distinct $x, y \in X$ there exist open cover $(U_i)_1^r$, $V, W \in \mathcal{T}_X$, $h \in P^{(1)}$ with

 $x \in V \land y \in W \land (\forall c \in \nu^{-1}(V \cup W))(c \in h^{-1}[r] \land \nu(c) \in U_{h(c)}) \land \{i \mid U_i \cap V \neq \emptyset \neq U_i \cap W\} = \emptyset.$

Theorem 8. Let X be a separable metric space, $\nu_0, \ldots, \nu_n, \lambda, \lambda' \in \mathcal{I}_d$, $A_i, B \subseteq \mathbb{N}$ $(i < n \in \mathbb{N})$, $E_n := \{x_i, y_i \mid i < n\} \subseteq X$ and $x, y \in X$ distinct. Suppose ν_0 separating a.f.p., $\nu_{i+1} = (\nu_i)_{x_i,y_i}^{A_i}$ for all i < n and $\lambda' = \lambda_{x,y}^{B}$. If $E_n \cap \{x,y\} = \emptyset$ and B is nonrecursive then $\lambda' \not\leq_a \nu_n$.

Proof. Fix $(U_i)_1^r, V, W, h$ as in definition of separation a.f.p., and pick $\epsilon > 0$ suff. small that $B(x;\epsilon) \subseteq V \land B(y;\epsilon) \subseteq W \land N_\epsilon(E_n) \cap \{x,y\} = \emptyset$. Also suppose $\lambda'|_{2\mathbb{N}+1} \leq_{\mathbf{a}} \nu_n$ at precision ϵ via $f \in P^{(1)}$. Write $k \in \mathbb{N}$, $a = f(2k+1) = \sum_{i=0}^n a_i 2^i$ where $a_n \in \mathbb{N}$, $(a_i)_{i < n} \subseteq \{0,1\}$. The last requirement on ϵ means $\lambda'(2k+1) \in \{x,y\} \implies \nu_n(a) \in \operatorname{im} \nu_0 \setminus E_n$ and $a_i = 0$ for i < n (inductively for $m = n, \ldots, 1$, use

$$\operatorname{im} \nu_0 \backslash E_n \ni \nu_m (\sum_{j=0}^m b_j 2^j) = \nu_{m-1}^{A_{m-1}} (\sum_{j=1}^m b_j 2^j) = \nu_{m-1} (\sum_{j < m} b_{j+1} 2^j)$$

where $(b_j)_0^m = (a_i)_0^n, (a_{i+1})_0^{n-1}, \dots, (a_{i+n-1})_0^1)$. So, we get $\nu_n(a) = \nu_n(a_n 2^n) = \dots = \nu_1(a_n 2^1) = \nu_0(a_n)$ while $g: k \mapsto a_n = \left\lfloor 2^{-n} f(2k+1) \right\rfloor$ is computable with im $g \subseteq \text{dom } \nu_0$.

 $(\lambda'(2k+1) = x \implies g(k) \in h^{-1}B_0) \wedge (\lambda'(2k+1) = y \implies g(k) \in h^{-1}B_1)$ for all $k \in \mathbb{N}$ where $B_0 := \{i \mid B(x;\epsilon) \cap U_i \neq \emptyset\}$ and $B_1 := \{i \mid B(y;\epsilon) \cap U_i \neq \emptyset\}$. In particular, $B \leq_{\mathsf{m}} B_0$ via $h \circ g$, which implies B recursive, a contradiction. So, $\lambda' \not\leq_{\mathsf{a}} \nu_n$. \square **Lemma 9.** 1. $A \leq_{\mathsf{m}} B \implies \nu^A \leq \nu^B$,

2. If $x \neq y \land \{x_i, y_i \mid i < n\} \cap \{x, y\} = \emptyset \land \emptyset \neq A \neq \mathbb{N} \land (\forall i < n)(\nu_{i+1} = (\nu_i)_{x_i, y_i}^{A_i})$ and $\lambda_{x, y}^B \leq_a (\nu_n)_{x, y}^A$ where ν_0 separating a.f.p. then $B \leq_m A$.

Proof. (1): Fix $f \in R^{(1)}$ such that $A = f^{-1}B$ and let $g: \mathbb{N} \to \mathbb{N}$, $2k+i \mapsto \begin{cases} 2k, & \text{if } i = 0, \\ 2f(k) + 1, & \text{if } i = 1 \end{cases}$. Then one checks $\nu^A \leq \nu^B$ via g.

(2): Fix $(U_i)_1^r, V, W, h$ as in definition of separation a.f.p. (for $x \neq y$), $\epsilon > 0$ such that $B(x; \epsilon) \subseteq A$

 $V \wedge B(y;\epsilon) \subseteq W \wedge N_{\epsilon}(E_n) \cap \{x,y\} = \emptyset \text{ where } E_n := \{x_i,y_i \ | \ i < n\}. \text{ Let } g \in P^{(1)} \text{ witness } \lambda^B \leq_{\mathsf{a}} (\nu_n)^A \text{ at precision } \epsilon \text{ and denote } l : \mathbb{N} \to \mathbb{N}, k \mapsto \left\lfloor \frac{1}{2}g(2k+1) \right\rfloor,$ $C_i := \{k \in \mathbb{N} \ | \ g(2k+1) \equiv i \pmod{2}\} \ (i=0,1). \text{ Also let } B_0 := \{i \ | \ B(x;\epsilon) \cap U_i \neq \emptyset\}, \ B_1 := \{i \ | \ B(y;\epsilon) \cap U_i \neq \emptyset\}, \ \text{and choose } c \in A, \ d \in \mathbb{N} \setminus A, \ m : k \mapsto \left\lfloor 2^{-n}l(k) \right\rfloor$ and $f : \mathbb{N} \to \mathbb{N}, k \mapsto \begin{cases} c, & \text{if } k \in C_0 \wedge m(k) \in h^{-1}B_0, \\ d, & \text{if } k \in C_0 \wedge m(k) \in h^{-1}B_1, \\ l(k), & \text{if } k \in C_1 \end{cases}$

plainly C_0, C_1 are disjoint recursive sets (with union \mathbb{N}), so $f \in P^{(1)}$. We show $f \in R^{(1)}$ with $(\forall k)(k \in B \iff f(k) \in A)$.

Firstly, if $k \in C_0$ then

$$\epsilon > d(\lambda^B(2k+1), (\nu_n \circ l)(k))$$

$$\implies (\nu_n \circ l)(k) \in \operatorname{im} \nu_0 \setminus E_n$$

$$\implies l(k) = a_n 2^n$$

where $a_n = m(k)$. So $(\nu_n \circ l)(k) = \nu_n(a_n.2^n) = \cdots = \nu_0(a_n.2^0) = (\nu_0 \circ m)(k)$ (this also shows $C_0 \subseteq m^{-1} \operatorname{dom} \nu_0$). Now definition of B_0, B_1

implies $(\lambda^B(2k+1) = x \implies m(k) \in h^{-1}B_0) \wedge (\lambda^B(2k+1) = y \implies m(k) \in h^{-1}B_1)$, so $k \in C_0$ implies $k \in B \iff f(k) \in A$. For $k \in C_1$, instead $\lambda^B_{x,y}(2k+1) = ((\nu_n)^A_{x,y} \circ g)(2k+1)$ with $k \in B \iff l(k) \in A$ (this uses $d(x,y) \geq \epsilon$). So f has the properties required.

In particular, for any ν_n, x, y as above, the map $\alpha: A \mapsto (\nu_n)_{x,y}^A$ induces an embedding of \leq_{m} -degrees in \leq_{a} -degrees with least element $[\nu_n]_{\equiv_{\mathsf{a}}}$.

Randomness and density

Definition 10. Consider a bounded effective metric space (X,d,ν_0) . A **denseness test** (A,a,j) has $A\subseteq \mathbb{N}$ infinite c.e., $a\in \text{dom }\nu_0,\ j\in \mathbb{N}$; $\xi\in X^\mathbb{N}$ fails (A,a,j) if $\xi\in \cap_{l\in A}X^\mathbb{N}\setminus \sigma^{-l}\left(\alpha\langle a,j\rangle\times X^\mathbb{N}\right)$, passes (A,a,j) if $\xi\in \cup_{l\in A}\sigma^{-l}\left(\alpha\langle a,j\rangle\times X^\mathbb{N}\right)$; these define resp. closed, open sets in $X^\mathbb{N}$.

 $\mathcal{I}_{d}^{\mathsf{rand}} := \{ \xi \in X^{\mathbb{N}} \mid \xi \text{ passes all denseness tests} \}.$

We introduce another generalisation of the definition of compact sequences.

Definition 11. Suppose X a separable metric space, $(U_i)_1^r$ a finite open cover, $\epsilon > 0$ with each $N_{\epsilon}(U_i)$ nondense and $\nu \in \mathcal{I}_d$, $f \in P^{(1)}$ s.t. (1) holds. Then ν is properly covering.

If $\nu \in \mathcal{I}_d$ is properly covering then $|X| \geq 2$; any separating a.f.p. dense sequence in a compact space X with $|X| \geq 2$ is properly covering.

Proof. For each $x \in X$ we have $(U_i(x))_1^{r_x}$, $\mathcal{T}_X \ni V_x \ni x$ and $h_x \in P^{(1)}$ s.t. $(\forall c \in \nu^{-1}V_x)(\nu(c) \in U_{h_x(c)}(x))$. By compactness there exist s and $(x_i)_{i < s} \subseteq X$ with $X = \cup_{i < s} V_{x_i}$. We can take a formal disjoint union of $(U_j(x_i))_{j \in [r_{x_i}]}$ (i < s), say $(U_i)_{i \in [r]}$ where $r := \sum_{i < s} r_{x_i}$, and by adding appropriate constants to each h_{x_i} (i < s) we get $h \in P^{(1)}$ with $(\forall c \in \text{dom } \nu)(\nu(c) \in U_{h(c)})$.

Proper covering does not imply separation at finite precision.

- **Proposition 12.** 1. Suppose $\nu_0, \ldots, \nu_n \in \mathcal{I}_d$, $(\forall i < n)(\nu_{i+1} = (\nu_i)_{x_i,y_i}^{A_i})$, ν_0 total & properly covering, and $\lambda \in \mathcal{I}_d^{rand}$. Then $\lambda \not\leq_a \nu_n$.
 - 2. Suppose $|X| \geq 2$. For any $\nu \in \mathcal{I}_d^{rand}$ there exists $\lambda \in X^{\mathbb{N}} \setminus \mathcal{I}_d^{rand}$ with $\nu \leq \lambda$.
 - 3. \mathcal{I}_d^{rand} is closed under \oplus .

Proof. (1): Suppose $\lambda \leq_a \nu_n$ via $f \in P^{(1)}$ at precision ϵ , where ϵ suff. small that $N_{\epsilon}(\{x_i,y_i\})$ and $N_{\epsilon}(U_j)$ nondense for each i < n and each $j \in [r]$, for some open cover $(U_j)_1^r$. We have dom $\nu_n = \mathbb{N} = \dot{\cup}_{i < n} A_i \dot{\cup} 2^n \mathbb{N}$ where each A_i is infinite c.e. with $\nu_n(A_i) = \{x_i, y_i\} \subseteq \operatorname{im} \nu_{i+1}$ (i < n). Since λ total, $f \in R^{(1)}$ with some $A_i \cap \operatorname{im} f$ (i < n) or $2^n \mathbb{N} \cap \operatorname{im} f$ infinite (by pigeonhole principle). Each of these sets is c.e. If $A_i \cap \operatorname{im} f$ infinite, its ν_n -image $(\subseteq \{x_i, y_i\})$ lies within ϵ of $\lambda(f^{-1}A_i)$ which is dense, contradicting choice of ϵ . If $2^n \mathbb{N} \cap \operatorname{im} f$ infinite, let h be as in definition of ν_0 for cover $(U_i)_1^r$. Then

each $h^{-1}\{i\}$ is c.e., so $f^{-1}(2^n(h^{-1}\{i\}))$ is c.e., and at least one such set is infinite, so has λ image dense & $\subseteq N_{\epsilon}(U_i)$ (contradicting choice of $(U_i)_1^r, h$).

(2): For any $\nu \in \mathcal{I}_{\mathsf{d}}^{\mathsf{rand}} \not\ni \lambda$ we have $\nu \oplus \lambda \not\in \mathcal{I}_{\mathsf{d}}^{\mathsf{rand}}$. Such λ can always be found e.g. as a nondense total sequence (extend \oplus definition). (3): Let $\lambda_0, \lambda_1 \in \mathcal{I}_{\mathsf{d}}^{\mathsf{rand}}$. For any denseness test (A, a, j) we have some i < 2 such that $A \cap (2\mathbb{N} + i)$ is infinite. Clearly $\lambda_i \leq \lambda_0 \oplus \lambda_1$ via (injective total recursive) $h: k \mapsto 2k + i$, and $B:=h^{-1}(A \cap (2\mathbb{N} + i))$ is infinite c.e. We know λ_i passes the denseness test (B, a, j), say $k \in B \cap \lambda_i^{-1} \alpha \langle a, j \rangle$, so $(\lambda_0 \oplus \lambda_1)(h(k)) = \lambda_i(k)$ shows $\lambda_0 \oplus \lambda_1$ passes (A, a, j).

Remains to establish $\mathcal{I}_{d}^{rand} \neq \emptyset$. For topological space Y, a continuous surjection $T: Y \rightarrow Y$ is one-sided topologically mixing if

$$(\forall U, V \in \mathcal{T}_Y \setminus \{\emptyset\}) (\exists N \in \mathbb{N}) (\forall n) (n \geq N \implies T^n(U) \cap V \neq \emptyset).$$

One checks

Lemma 13. For any separable metrizable X and $Y = X^{\mathbb{N}}$, left shift $\sigma : Y \to Y$ is one-sided topologically mixing (w.r.t. product topology).

More generally, consider a complete effective metric space (Y,d,ν) with ideal ball numbering α and continuous one-sided top. mixing $T:Y\to Y$. By definition, each $\cup_{m\in A}T^{-m}V$ dense $(V\in\mathcal{T}_Y\setminus\{\emptyset\},\ A \text{ infinite})$, so in particular $R_A:=\cap_{a\in\text{dom }\alpha}\cup_{m\in A}T^{-m}\alpha(a)$ and $R:=\cap\{R_A\mid A \text{ infinite c.e.}\}$ dense \mathcal{G}_δ in Y (by Baire category theorem). We now apply to $Y=X^\mathbb{N}$. Recall a formal inclusion \square of total basis numberings α , β of space X has the weak basis property if $(\forall b)(\forall x\in X)(\exists a)(x\in\beta(b)\Longrightarrow x\in\alpha(a)\land a\sqsubseteq b)$.

Proposition 14. Let (X,d,ν_0) be a complete bounded effective metric space with ν_0 total, and equip $X^{\mathbb{N}}$ with the (bounded) product metric $\widehat{d}(\xi,\eta) := \sum_{i \in \mathbb{N}} 2^{-i-1} d(\xi_i,\eta_i)$ and dense sequence $\gamma: \mathbb{N} \to X^{\mathbb{N}}$ defined by $\gamma(\langle w \rangle)(i) := \begin{cases} \nu_0(w_i), & \text{if } i < |w|, \\ \nu_0(i), & \text{if } i \geq |w| \end{cases}$. Then basis numberings defined by

$$lpha_{X^{\mathbb{N}}}: \mathbb{N} \to \mathcal{T}_{X^{\mathbb{N}}}, \langle a, r \rangle \mapsto B_{\widehat{d}}(\gamma(a); \nu_{\mathbb{Q}^{+}}(r)),$$

$$\beta: \mathbb{N} \to \mathcal{T}_{X^{\mathbb{N}}}, \langle a, r, N \rangle \mapsto \prod_{i < N} B_{d}(\gamma(a)_{i}; \nu_{\mathbb{Q}^{+}}(r)) \times X^{\mathbb{N}}$$

are effectively equivalent, and any $\xi \in X^{\mathbb{N}}$ has $\left((\sigma^l \xi)_{l \in \mathbb{N}} \in \mathcal{I}_d^{rand}|_{X^{\mathbb{N}}} \iff \xi \in R|_{X^{\mathbb{N}},\sigma} \implies \xi \in \mathcal{I}_d^{rand}|_{X}\right);$ in particular $\mathcal{I}_d^{rand}|_{X^{\mathbb{N}}}$ is residual in $X^{\mathbb{N}}$.

Proof. It is convenient to use the following binary relations on \mathbb{N} :

$$\langle a,r \rangle \sqsubseteq \langle b,q,N \rangle : \iff \max_{i < N} d(\gamma(a)_i,\gamma(b)_i) + 2^{i+1} \nu_{\mathbb{Q}^+}(r) < \nu_{\mathbb{Q}^+}(q),$$
 $\langle a,r,N \rangle \sqsubseteq' \langle b,q \rangle : \iff \sum_{i < N} 2^{-i-1} (\nu_{\mathbb{Q}^+}(r) + d(\gamma(a)_i,\gamma(b)_i))$
 $+ C_0.2^{-N} < \nu_{\mathbb{Q}^+}(q);$

here $\mathbb{Q}^+ \ni C_0 \ge \operatorname{diam}(X,d)$ is a fixed bound. We first check \sqsubseteq , \sqsubseteq' are c.e. formal inclusions (of $\alpha_{X^{\mathbb{N}}}$ in β , resp. of β in $\alpha_{X^{\mathbb{N}}}$), each with the weak basis property.

Next denote $B_{\langle a,r\rangle}:=\{\langle b,q\rangle\,\big|\,\langle b,q\rangle\, \sqsubset \langle\langle a\rangle,r,1\rangle\}$ $(a,r\in\mathbb{N})$. Clearly $B_{\langle a,r\rangle}$ is nonempty and c.e. uniformly in $a,r\in\mathbb{N}$, and for any $A\subseteq\mathbb{N}$ the condition $(\forall a,r)\, \big(\xi\in\cup_{l\in A}\sigma^{-l}(\alpha\langle a,r\rangle\times X^{\mathbb{N}})\big)$ is equivalent to $(\forall a,r)(\exists\langle b,q\rangle\in B_{\langle a,r\rangle})\, \big(\xi\in\cup_{l\in A}\sigma^{-l}\alpha_{X^{\mathbb{N}}}\langle b,q\rangle\big)$. In particular, this is implied by $(\forall b,q)\, \big(\xi\in\cup_{l\in A}\sigma^{-l}\alpha_{X^{\mathbb{N}}}\langle b,q\rangle\big)$, or equivalently $(\forall b,q)(\exists k\in A)\, \big((\sigma^{l+k}\xi)_{l\in\mathbb{N}}\in\alpha_{X^{\mathbb{N}}}\langle b,q\rangle\times (X^{\mathbb{N}})^{\mathbb{N}}\big)$. Quantifying over infinite c.e. A, thus $(\xi\in R|_{X^{\mathbb{N}},\sigma}\Longleftrightarrow)$ $(\sigma^l\xi)_{l\in\mathbb{N}}\in\mathcal{I}_{\mathsf{d}}^{\mathsf{rand}}|_{X^{\mathbb{N}}}$ implies $\xi\in\mathcal{I}_{\mathsf{d}}^{\mathsf{rand}}|_{X^{\mathbb{N}}}$

Example: $X = \{0,1\}$ corresponds (easily checked) to $\mathcal{I}_{\mathsf{d}}^{\mathsf{rand}}|^X = \{\chi_B \, \big| \, B \subseteq \mathbb{N} \, \text{ bi-immune} \}$, i.e. those sets B for which neither B nor $\mathbb{N} \setminus B$ contains an infinite c.e. set.

Comparison with other tests

For any $A\subseteq \mathbb{N}$, $N\in \Pi^0_1(X)$ denote

$$F_{A,N} := \prod_{i \in \mathbb{N}} W_i \text{ where } W_i = \begin{cases} X, & \text{if } i \not \in A, \\ N, & \text{if } i \in A \end{cases}.$$

 $F_{A,X\setminus lpha\langle a,j
angle}=\{\xi\,ig|\,\xi \ ext{fails}\ (A,a,j)\} \ ext{for denseness test}\ (A,a,j),$ $X^{\mathbb{N}}\setminus \mathcal{I}^{\mathsf{rand}}_{\mathsf{d}}=\cup \{F_{A,N}\,ig|\,A \ ext{infinite c.e.,}\ N=X\setminus lpha\langle a,j
angle, a,j\in\mathbb{N}\,\}.$

??For X effectively compact,

$$f: \{0,1\}^{\mathbb{N}} \times \mathcal{K}_{>}(X) \to \mathcal{K}_{>}(X^{\mathbb{N}}), (\chi_{A},K) \mapsto F_{A,K}$$

computable. More generally, suppose $|X| \geq 2$. If μ_0 is a measure positive on nonempty open sets, for any test (A,a,j) we have $\mu_0(X\backslash B_0) < 1$ for $B_0 := \alpha \langle a,j \rangle$, so $F_{A,X\backslash B_0}$ is a closed λ -nullset. Here λ is the product measure on $X^\mathbb{N}$ corresponding to measure μ_0 on X; also one can show λ a computable probability measure if μ is and X bounded complete.

Effectiveness and approximability

When choosing naming system γ for a given space Y, several types of requirements [?, $\S 2.7$]:

- (a) require $f_i :\subseteq X_i \to Y$ computable $(i \in I)$
- (b) require $f_i :\subseteq Y \to Z_i$ computable $(i \in I)$
- (c) require operations $f_i:\subseteq Y^{n_i}\to Y$ computable $(i\in I)$

For example, types (a)+(c) and (b) resp. addressed by **Proposition 15.** Fix represented sets (X_i, ρ_i) , maps $f_i :\subseteq X_i \to Y$, $g_i :\subseteq Y \to Y$ $(i \in \mathbb{N})$ & suppose

 $Y=\cup_{i\in\mathbb{N}\,,w\in\mathbb{N}^*}\widehat{g}_w(\mathsf{im}\,f_i\cap\mathsf{dom}\,\widehat{g}_w)$ where $\widehat{g}_w:=g_{w_{|w|-1}}\circ\ldots\circ g_{w_0}$.

 $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to Y$ defined by $\operatorname{dom} \delta = \dot{\cup}_{i \in \mathbb{N}, w \in \mathbb{N}^*} i.\langle w \rangle.(\rho_i^{-1} f_i^{-1} \operatorname{dom} \widehat{g}_w)$ and $\delta(i.\langle w \rangle.p) := (\widehat{g}_w \circ f_i \circ \rho_i)(p)$ has $\delta \in \mathcal{R}_Y$. f_i is (ρ_i, δ) -computable and g_i is (δ, δ) -computable $(i \in \mathbb{N})$.

Proposition 16. Fix represented sets (Y_i, δ_i) , $f_i :\subseteq X \to Y_i$ $(i \in \mathbb{N})$ where $|X| \leq 2^{\aleph_0}$. Then there exists $\rho \in \mathcal{R}_X$ such that each f_i is strongly (ρ, δ_i) -computable $(i \in \mathbb{N})$.

More sophisticated results for type (c), see [?, Thm 2.7.15], [?],

For requirements of type (a)+(b) or (b)+(c), in general there exist counterexamples:

- **Proposition 17.** 1. there exist sets X,Y,Z, maps $f:\subseteq X \to Y$, $g:\subseteq Y \to Z$ and total numberings ν,μ of X,Z respectively, such that $\neg(\exists \lambda:\subseteq \mathbb{N} \to Y)(f\circ \nu \leq \lambda \wedge g\circ \lambda \leq \mu)$.
 - 2. there exist sets Y, Z, maps $f :\subseteq Y \to Y$, $g :\subseteq Y \to Z$ and total numbering μ of Z such that $\neg(\exists \lambda \in \mathsf{TN}(Y))(f \circ \lambda \leq \lambda \land g \circ \lambda \leq \mu)$.
 - 3. there exist separable metric spaces Y, Z, maps $f : \subseteq Y \to Y$, $g : \subseteq Y \to Z$ and $\mu \in \mathcal{I}_d^Z \cap Z^{\mathbb{N}}$ such that $\neg (\exists \lambda \in \mathcal{I}_d^Y) (f \circ \lambda \leq \lambda \wedge g \circ \lambda \leq \mu)$.
- **Proof.** (1): X = Y = Z denumerable, $f = g = \mathrm{id}_X$, ν total injective numbering of X, μ a total numbering s.t. $\nu \not \leq \mu$ (e.g. an incomparable total injective numbering, of which there are 2^{\aleph_0} ; see [?]).
- (2): Y = Z denumerable, μ a total injective numbering, $h: \mathbb{N} \to \mathbb{N}$ a nonrecursive bijection with $N_h: \mathbb{N} \to \overline{\mathbb{N}}$, $k \mapsto \#\operatorname{Fix}(h^k)$ not lower semicomputable, $f = \mu \circ h \circ \mu^{-1}$, $g = \operatorname{id}_Y$. If $\lambda \in \operatorname{TN}(Y)$ and $n \in P^{(1)}(\lambda, \mu)$ -realises $g, =_Y$ is $[\lambda, \lambda]$ -decidable via $\langle a, b \rangle \mapsto \delta_{n(a), n(b)}$ (since g, μ injective). So $N_{f,M}: \mathbb{N} \to \mathbb{N}$, $k \mapsto \#\operatorname{Fix}(f^k|_{\lambda[0,M)})$ $(M \ge 1)$ are uniformly effective provided also f is (λ, λ) -effective: consider

$$a_n := \mu a < M\left((f^k \circ \lambda)(a) = \lambda(a) \notin \{\lambda(a_i) \mid i < n\}\right)$$

with convention $\mu a < M$ (False) = M, inductively for $n \le M$ and $N := \mu n$ ($a_n = M$) ($\le M$). Then $\lambda|_{\{a_i|i < N\}}$ is injective with image Fix($f^k|_{\lambda[0,M)}$), so $N_{f,M}(k) = N$.

Further, $(f^k \circ \lambda)(a) = \lambda(a)$ iff $(h^k \circ \mu^{-1} \circ \lambda)(a) = (\mu^{-1} \circ \lambda)(a)$, so $\operatorname{Fix}(h^k|_{(\mu^{-1}\circ\lambda)[0,M)}) = \mu^{-1}\operatorname{Fix}(f^k|_{\lambda[0,M)})$. In unions over increasing M, $\operatorname{Fix}(h^k) = \mu^{-1}\operatorname{Fix}(f^k)$ and $N_h(k) = \sup_M N_{f,M}(k)$. This contradicts choice of h.

(3): $Y = Z = \mathbb{R}$, $f = \mathrm{id}_{\mathbb{R}} + \alpha$ ($\alpha \in \mathbb{R} \setminus \mathbb{Q}$), $g = \mathrm{id}_{\mathbb{R}}$, $\mu = \nu_{\mathbb{Q}}$. The only solution for $\lambda :\subseteq \mathbb{N} \to Y$ is then the empty partial sequence.

Next, consider (a),(b),(c) when maps are approximable rather than computable. Here $f:\subseteq X \to Y$ approximable w.r.t. $\nu \in \mathcal{I}_d^X$, $\lambda \in \mathcal{I}_d^Y$ if $f \circ \nu \leq_a \lambda$ (extending definition of \leq_a).

If X uniformly discrete, (1), (2) transfer since $\nu \leq \lambda$ iff $\nu \leq_a \lambda$ for any $\nu, \lambda \in \mathcal{I}_d^X = \mathsf{TN}(X)$. If X compact, instead take $\nu_0 \in \mathcal{I}_d^X$ compact and pick $\nu, \mu \leq_a$ -incomparable. Then $\neg(\exists \lambda : \subset \mathbb{N} \to Y)(f \circ \nu <_a \lambda \land g \circ \lambda <_a \mu)$.

Lemma 18. If X compact, $\nu \in \mathcal{I}_d$ compact and $\pi : X \to Y$ a continuous surjection then $\pi \circ \nu$ is compact.

Proof. Uses Lebesgue numbers and uniform continuity of π ; see [?].

Corollary 19. Let Y, Z be compact metric spaces, $f: Y \to Y$, $g: Y \to Z$ (total) continuous surjective and $\mu \in \mathcal{I}_d^Z$. For any compact $\lambda \in \mathcal{I}_d^Y$ we have $f \circ \lambda \leq_a \lambda \land g \circ \lambda \leq_a \mu$.

Proof. Follows from Lemma 18 and analogue of Lemma 1.

Given existence of compact $\lambda \in \mathcal{I}_{d}^{Y}$, this is a positive result for requirements of type (b)+(c).

Requirements of type (a),(b)

For $\nu \in \mathcal{I}_X$ we denote the cylindrification by $\tilde{\nu}$: dom $\tilde{\nu} = \langle \operatorname{dom} \nu, \mathbb{N} \rangle$, $\tilde{\nu} \langle i, j \rangle := \nu(i)$.

Proposition 20. Fix separable metric spaces X, Y_i , maps $\Psi_i : X \to Y_i$ and $\lambda_i \in \mathcal{I}_d^{Y_i}$ (i < n). There exists $\nu \in \mathcal{I}_d^X$ s.t. $(\forall i < n) \Psi_i \circ \nu \leq_a \lambda_i$.

Proof. Fix $\nu_0 \in \mathcal{I}_d \cap X^{\mathbb{N}}$ and (for $i < n, k \in \mathbb{N}$)

$$a_k^{(i)} := \mu n (n \in \operatorname{dom} \tilde{\lambda}_i \wedge \neg (\exists j < k) (n = a_j) \wedge d((\Psi_i \circ \nu_0)(k), \tilde{\lambda}_i(n)) < 2^{-k}).$$

We denote $\nu\langle a_k^{(0)},\ldots,a_k^{(n-1)}\rangle:=\nu_0(k)$, with ν undefined elsewhere. For any $\epsilon>0$, $\max_{i< n}d((\Psi_i\circ\nu)\langle a_k^{(0)},\ldots,a_k^{(n-1)}\rangle,\tilde{\lambda}_i(a_k^{(i)}))<\epsilon$ fails only for finitely many k (among those with $\epsilon\leq 2^{-k}$). We also have $\operatorname{im}\nu=\operatorname{im}\nu_0$ and $\tilde{\lambda}_i\equiv\lambda_i$ for each i< n.

Proposition 21. Let X,Y be separable metric spaces, $\Psi: X \to Y$, $\nu \in \mathcal{I}_d^X$, $\lambda \in \mathcal{I}_d^Y$ as appropriate. Then:

- 1. for any ν there exists λ with $\Psi \circ \nu \leq \lambda$; if Ψ continuous onto Y, there exists λ with $\Psi \circ \nu \equiv \lambda$,
- 2. if Ψ open, for any λ there exists ν with $\Psi \circ \nu \leq \lambda$,
- 3. for any ν there exists λ with $\Psi \circ \nu \leq_a \lambda$,
- 4. for any λ there exists ν with $\Psi \circ \nu \leq_a \lambda$.

Proof. (2): Each $\Psi^{-1}\{\lambda(a)\}$ separable $(a \in \text{dom }\lambda)$ so if nonempty fix a dense subsequence $(x_i^{(a)})_{i \in \mathbb{N}}$ and let $\nu\langle a,i\rangle := x_i^{(a)}$ $(i \in \mathbb{N})$ $(\nu$ undefined elsewhere). Since Ψ open, Ψ^{-1} im λ is dense, hence so is im ν .

For (4), if Ψ onto we can construct $\nu \in \mathcal{I}_{d}^{X}$ in a different way. First, pick $\nu_{0} \in \mathcal{I}_{d}^{X} \cap X^{\mathbb{N}}$ and $\lambda \in \mathcal{I}_{d}^{Y}$. Let $\operatorname{dom} \nu = \{a_{k} \mid k \in \mathbb{N}\}, \ \nu(a_{k}) = \nu_{0}(k)$ for $a_{k} := \mu n \ (n \in \operatorname{dom} \tilde{\lambda} \wedge \neg (\exists j < k) (n = a_{j}) \wedge \tilde{\lambda}(n) \in U_{k}) \quad (k \in \mathbb{N})$

where $(U_k)_{k\in\mathbb{N}}\subseteq\mathcal{T}_Y\setminus\{\emptyset\}$ has the property $(\forall x\in \operatorname{im}\lambda)(\forall N)(\exists k\geq N)(U_k\ni x)$. In place of $\operatorname{dom}\nu\subseteq \operatorname{dom}\tilde{\lambda}$ we now have equality: for c_l the l^{th} element of $\operatorname{dom}\tilde{\lambda}$ in ascending order, and $N_l:=\mu k\left(U_k\ni\tilde{\lambda}(c_l)\wedge(\forall l'< l)(k>N_{l'})\right)$, we show $c_l\in\{a_j\,|\,j\leq N_l\}$ $(l\in\mathbb{N})$. First, $N_0=\mu k\left(U_k\ni\tilde{\lambda}(c_0)\right)$, so $\neg(\exists j< N_0)(c_0=a_j)$ (as $\tilde{\lambda}(a_j)\in U_j$) and then $a_{N_0}=c_0$. Secondly, $a_{N_{l+1}}=\min(\tilde{\lambda}^{-1}U_{N_{l+1}})\setminus\{a_j\,|\,j< N_{l+1}\}$ and $U_{N_{l+1}}\ni\tilde{\lambda}(c_{l+1})$ so if $c_{l+1}\not\in\{a_j\,|\,j\leq N_{l+1}\}$ then $a_{N_{l+1}}< c_{l+1}$, implying $(\exists k\leq l)a_{N_{l+1}}=c_k\in\{a_j\,|\,j\leq N_k\}$. But then $N_{l+1}>N_l\geq N_k$ contradicts injectivity of $(a_i)_{i\in\mathbb{N}}$.

To ensure also $\Psi \circ \nu \equiv_a \tilde{\lambda}$, we assume compactness. We also note two improvements on Proposition 21(2) with similar conditions.

Proposition 22. Suppose X, Y are separable metric spaces, $\lambda \in \mathcal{I}_d^Y$, $\Psi : X \to Y$ any map.

1. If Ψ onto and Y compact, there exists $\nu \in \mathcal{I}_d^X$ such that $\Psi \circ \nu \equiv_a \lambda$,

- 2. If $\overline{\Psi^{-1}}$ im $\lambda = X$ and each $\Psi^{-1}\{y\}$ is compact $(y \in \operatorname{im} \lambda)$, there exists $\nu \in \mathcal{I}_d^X$ such that $\Psi \circ \nu = \tilde{\lambda}$.
- 3. If $\overline{\Psi^{-1}}$ im $\lambda = X$ and X compact, there exists compact $\nu \in \mathcal{I}_d^X$ such that $\Psi \circ \nu \leq \lambda$.

Proof. (1): In view of the above, it remains to construct $(U_k)_k$ appropriately. As Y compact, let ν_0 be such that $\nu_0|_{2\mathbb{N}+1}$ is dense and $2(\sum_{j< l} n_j + i) \in \nu_0^{-1} \Psi^{-1} \{y_i^l\}$ $(l \in \mathbb{N}, i < n_l)$ where $\{y_i^l \mid i < n_l\}$ is a 2^{-l} -spanning set for Y. Then let $U_k := B((\Psi \circ \nu_0)(k); 2^{-b_k})$ where $b_k = l$ if $2\sum_{j< l} n_j \leq k < 2\sum_{j\leq l} n_j$. This ensures $\lim_{k \to \infty} b_k = \infty$ and so $\Psi \circ \nu \equiv_a \tilde{\lambda}$.

(2): For each $a \in \text{dom } \lambda$, $k \in \mathbb{N}$ there is a finite 2^{-k} -spanning subset of $\Psi^{-1}\{\lambda(a)\}$, say $(z_i(a,k))_{i < m(a,k)}$. Let $\nu\langle a, \sum_{j < k} m(a,j) + i \rangle := z_i(a,k)$ for each i < m(a,k) (also $\nu\langle a,m \rangle \uparrow$ if $a \not\in \text{dom } \lambda$). Plainly $(\Psi \circ \nu)\langle a,m \rangle = \lambda(a) = \tilde{\lambda}\langle a,m \rangle$ whenever $a \in \text{dom } \lambda \wedge m \in \mathbb{N}$, and both sides undefined for

 $a \not\in \text{dom }\lambda$. Given $x \in X$, $k \in \mathbb{N}$ there exist $a \in \text{dom }\lambda$, $y \in \Psi^{-1}\{\lambda(a)\} \cap B(x; 2^{-k-1})$ and i < m(a,k+1) s.t. $z_i(a,k+1) \in B(y; 2^{-k-1}) \cap \text{im }\nu$. Then $d_{\text{im }\nu}(x) < 2^{-k-1} + 2^{-k-1}$, and k was arbitrary.

We describe a general extension of (3) (of type (b)+(c)):

Proposition 23. Let X,Y be separable metric spaces, X compact, $\lambda \in \mathcal{I}_d^Y$, $g :\subseteq X \to Y$ any map with $\overline{g^{-1} \operatorname{im} \lambda} = X$, \mathcal{F} a denumerable family of (total) maps $X \to X$. Also take $(\theta_k)_{k \in \mathbb{N}} \subseteq (0, \infty)$ with $\inf_k \theta_k = 0$, $E_l \subseteq g^{-1} \operatorname{im} \lambda$ a finite θ_l -spanning set $(l \in \mathbb{N})$. Suppose $\sim_l (l \in \mathbb{N})$ are equivalence relations on \mathcal{F} s.t. \mathcal{F}/\sim_l finite,

$$(\forall y \in E_l)(\forall C \in \mathcal{F}/\sim_l)(\forall i \leq l)(\exists z \in E_i)\{fy \mid f \in C\} \subseteq B(z; \theta_i),$$
(2)

and which are increasingly fine & satisfy separating condition $(\forall f, f' \in \mathcal{F})(\exists l)(f \neq f' \implies f \not\sim_l f')$. Then there exists compact $\nu \in \mathcal{I}_d^X$ with $g \circ \nu \leq \lambda$ and $(\forall f \in \mathcal{F})(f \circ \nu \leq_a \nu)$.

Proof. Write $E_k = \{y_1^k, \dots, y_{r_k}^k\} \subseteq g^{-1} \text{ im } \lambda$ (a θ_k -spanning set for X, $k \in \mathbb{N}$). Based on \sim_l $(l \in \mathbb{N})$ and an injective total numbering $e \mapsto f_e$ of \mathcal{F} , we define ν with $\text{im } \nu = \cup_k E_k$; surjectivity will follow from (2), density from $\text{inf}_k \theta_k = 0$. Separating condition ensures the partitions $\mathcal{P}_l := \mathcal{F}/\sim_l (l \in \mathbb{N})$ (with $(\forall l)\mathcal{P}_{l+1} \geq \mathcal{P}_l$) are generating: $|\cap_l A_l| \leq 1$ for any $A_l \in \mathcal{P}_l$ $(l \in \mathbb{N})$. If each \mathcal{P}_l is endowed with a numbering $\nu_l :\subseteq \mathbb{N} \to \mathcal{P}_l$, this leads to a representation $\rho :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathcal{F}$: $\text{dom } \rho = \{p \in \mathbb{N}^{\mathbb{N}} \mid (\forall l)(p_l \in \text{dom } \nu_l) \wedge \cap_l \nu_l(p_l) \neq \emptyset\}$, $\rho(p) \in \cap_l \nu_l(p_l)$.

Will return to numbering $e\mapsto f_e$ and representation ρ of \mathcal{F} . Requirement for $f\in\mathcal{F}$ to be (ν,ν) -approximable equivalent to $f\circ\nu$ compact — (roughly speaking) suggests to store approximations to each f in each ν -name a. Form of ν will be

$$a = \langle l; j_0, \dots, j_l; j_0^{(0)}, \dots, j_l^{(0)}; \dots; j_0^{(m)}, \dots, j_l^{(m)}; \hat{b} \rangle \in \text{dom } \nu,$$

 $\nu(a) = y_{j_l}^l;$

 $(\forall i < l)d(y_{j_i}^i, y_{j_i}^l) < \theta_i$, $\hat{b} = b(l, j_l)$ for a fixed choice function $b :\subseteq \mathbb{N}^2 \to \mathbb{N}$ with $\operatorname{im} b \subseteq \operatorname{dom} \lambda$, $\operatorname{dom} b =$

 $\{(k,j) \mid 1 \leq j \leq r_k\}$ and $g(y_j^k) = (\lambda \circ b)(k,j)$ for all $(k,j) \in \text{dom } b$, plus further conditions on m and $j_i^{(q)}$ $(q \leq m, i \leq l)$. Namely, assuming dom ν_l finite, want $m \geq \max(\text{dom } \nu_l)$ and

$$d(fy_{j_l}^l,y_{j_i^{(p_l)}}^i)< heta_i$$
 whenever $i\leq l\in\mathbb{N}\,,f\in\mathcal{F},p\in
ho^{-1}\{f\}.$

One checks existence of suitable $j_i^{(q)}$ $(q \in \text{dom } \nu_l, i \leq l)$ for given $y = y_{j_l}^l \in E_l$ follows from (2).

For simplicity let $\operatorname{dom} \nu_l = [0, m_l]$ and $m_l := |\mathcal{P}_l| - 1$ $(l \in \mathbb{N})$, with $m = m_l$ determined by l. To complete the construction, there is some freedom in choice of ν_l . We will ensure each $f \in \mathcal{F}$ has a computable ρ -name; the (l+1)-block $j_0^{(q)}, \ldots, j_l^{(q)}$ relevant to f can be picked out of ν -name a based on this. More rigourously, fix choice function $c'' : \subseteq \mathcal{F} \times \mathbb{N}^3 \to \mathbb{N}$ s.t.

$$d(fy_j^l, y_{c''(f,l,k,j)}^k) < \theta_k$$
 for all $(f,l,k,j) \in \text{dom } c'' := \{(f,l,k,j) \mid f \in \mathcal{F} \land l < k \land 1 \leq j \leq r_l\}.$

For any fixed k and $f \in \mathcal{F}$, from $p \in \rho^{-1}\{f\}$ and $a \in \text{dom } \nu$ we will be able to compute

$$u := \begin{cases} j_k^{(p_l)}, & \text{if } k \leq l, \\ c''(f, l, k, j_l), & \text{if } l < k, \end{cases}$$

and observe $d(fy_{j_l}^l, y_u^k) < \theta_k$; this computation is possible since $(\{f\} \times \mathbb{N} \times \{k\} \times \mathbb{N}) \cap \text{dom } c''$ is finite.

To define ν_l $(l \in \mathbb{N})$, proceed in stages; at the end of stage i we will have each ν_l defined on an interval $[0,m_{l,i}]$ with

$$\nu_l[0, m_{l,i}] = \{ [f_j]_{\sim_l} | j \le i \}$$
 for all $l \in \mathbb{N}$. (3)

In stage 0 we define $m_{l,0} := 0$ and declare $0 \in \nu_l^{-1}\{[f_0]_{\sim_l}\}$ for all l; also let $l_0 := 0$ and $p^{(0)} := 0^{\omega} \ (\in \rho^{-1}\{f_0\})$.

At stage i+1 let $l_{i+1} := \inf\{l \in \mathbb{N} \mid (\forall j \leq i)(f_{i+1} \not\sim_l f_j)\}$ $(i \in \mathbb{N})$. For each $l < l_{i+1}$ we have $f_{i+1} \in \cup_{j \leq i} [f_j]_{\sim_l}$, so $(\exists p_l^{(i+1)} \leq m_{l,i})(\nu_l(p_l^{(i+1)}) = [f_{i+1}]_{\sim_l})$, and we leave ν_l unmodified, $m_{l,i+1} := m_{l,i}$. For $l \geq l_{i+1}$ we have $[f_{i+1}]_{\sim_l} \not\in \{[f_j]_{\sim_l} \mid j \leq i\} = \nu_l[0, m_{l,i}]$, so let $p_l^{(i+1)} := m_{l,i+1} := m_{l,i} + 1$ and $\nu_l(m_{l,i+1}) := [f_{i+1}]_{\sim_l}$.

In either case $(3)|_{i+1}$ holds (by inspection), computability of $(m_{l,i+1})_l \in \mathbb{N}^{\mathbb{N}}$ holds by induction, and the computability of $p^{(i+1)} \in \rho^{-1}\{f_{i+1}\}$ will follow once we show $l_{i+1} < \infty$. Suppose

that $l_{i+1}=\infty$; then $(\forall l)(\exists j\leq i)(f_{i+1}\sim_l f_j)$. By the pigeonhole principle and the fact $(\mathcal{P}_l)_l$ are increasingly fine, we get $(\exists j\leq i)(\forall l)(f_{i+1}\sim_l f_j)$, so $f_{i+1}=f_j$ since $(\mathcal{P}_l)_l$ is generating. This contradicts injectivity of $e\mapsto f_e$.

Finally, since $\{f_e \mid e \in \mathbb{N}\} = \mathcal{F}$, $(\forall i)(3)|_i$ implies $\nu_l(\cup_i[0,m_{l,i}]) = \mathcal{P}_l$ for each l. It is clear by construction ν_l injective, so $\sup_i m_{l,i}$ finite, and $\sup_i m_{l,i} = m_l = |\mathcal{P}_l| - 1$ as previously assumed.

Clear how to check compactness of ν w.r.t. $(B(y_j^k;\theta_k))_{j=1}^{r_k}$: use choice function $c^+:\subseteq \mathbb{N}^3 \to \mathbb{N}$ with $d(y_j^l,y_{c^+(l,k,j)}^k)<\theta_k$ for all $(l,k,j)\in \operatorname{dom} c^+:=\{(l,k,j) \mid l< k, 1\leq j\leq r_l\}$, and from $a\in \operatorname{dom} \nu$ compute

$$u := (j_k, \text{ if } l \ge k; c^+(l, k, j_l), \text{ if } l < k);$$

this uses finiteness of $\mathbb{N} \times \{k\} \times \mathbb{N}$) \cap dom c^+ .

If $id_X \in \mathcal{F}$, this argument (and data j_0, \ldots, j_{l-1} in names $a \in dom \nu$) can be omitted. Despite these good properties, several reasons to simplify or generalise above proof.

Examples for \sim_l

Consider equivalence relations $\sim_l (l \in \mathbb{N})$ defined from choice function \tilde{c} as follows: fix $\tilde{c}:\subseteq \mathcal{F}\times\mathbb{N}^3\to\mathbb{N}$ such that

$$d(fy_j^l,y_{\widetilde{c}(f,l,i,j)}^i) < heta_i \quad ext{ for all } (f,l,i,j) \in ext{dom } \widetilde{c} := \{(f,l,i,j) \ ig| \ i \leq l, 1 \leq j \leq r_l\},$$

define $f \sim_l f'$ if $\tilde{c}(f,\cdot), \tilde{c}(f',\cdot)$ agree on $([0,l] \times \mathbb{N}^2) \cap \text{dom } \tilde{c}(f,\cdot)$. Such \sim_l are increasingly fine, have \mathcal{F}/\sim_l finite and (2) holds (definition of ν can further be 'simplified' by requiring strictly $j_i^{(q)} = \tilde{c}(f,l,i,j_l)$ for all $i \leq l$ whenever $f \in \nu_l(q), q \leq m_l$).

If $f, f' \in \mathcal{F}$ distinct over $\cup_k E_k$, pick $k, x \in E_k$ s.t. $f(x) \neq f'(x)$, and w.l.o.g. assume $(\forall l)(E_l \subseteq E_{l+1})$. For $l \geq k$ s.t. $2\theta_l < d(fx, f'x)$ and $j \in [r_l]$ s.t. $y_j^l = x$ we must have $\tilde{c}(f, l, l, j) \neq \tilde{c}(f', l, l, j)$, hence $f \not\sim_l f'$. So the separating condition may be replaced by

$$(\forall f, f' \in \mathcal{F})(f \neq f' \implies f|_{\bigcup_k E_k} \neq f'|_{\bigcup_k E_k}),$$

and $\cup_k E_k$ chosen as any dense countable subset of g^{-1} im λ (while assuming $(\forall l)(E_l \subseteq E_{l+1})$).

References

- V. Brattka. Computability over topological structures. In *Computability and models*, Univ. Ser. Math., pages 93–136. Kluwer/Plenum, New York, 2003.
- Ju. L. Eršov. Theorie der Numerierungen. I. *Z. Math. Logik Grundlagen Math.*, 19:289–388, 1973.
- P. Hertling. A real number structure that is effectively categorical. MLQ Math. Log. Q., 45(2):147–182, 1999.
- R. Kenny. *Orbit complexity and computable Markov partitions*. PhD thesis, University of Western Australia, Jan 2008.
- K. Weihrauch. *Computability*. Springer-Verlag, Berlin, 1987.
- K. Weihrauch. *Computable analysis*. Springer-Verlag, Berlin, 2000.